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Preface

Many applications involve a certain degree of navigation and routing, and examples
are path planning for delivery vehicles, airline route planning, scheduling and
underwater navigation. Most vehicle routing problems are non-deterministic
polynomial-time (NP) hard combinatorial optimization problems, and a
well-known example is the travelling salesman problem (TSP). There are no effi-
cient algorithms for solving NP-hard problems. Though certain exact methods may
manage to solve problem instances of small problem size, any problem instances of
moderate sizes or large sizes become impractical to solve. This means that the main
alternatives are approximation methods and heuristic methods. Approximation
methods such as linear programming relaxation may give some indication of the
approximation solutions and how far the potential solutions may be from the
optimal solutions, there is no guarantee that an optimal solution can be found by
such approximations.

Navigation and routing problems can be formulated as optimization problems,
and they can in principle be solved by using optimization techniques. In recent
years, heuristic methods and metaheuristic approaches start to show promising
results. Among such metaheuristic algorithms are nature-inspired algorithms for
optimization, and they are population-based algorithms that are flexible and yet
efficient enough to obtain good solutions in a practically acceptable timescale.
There are some significant developments concerning nature-inspired algorithms,
especially those based on swarm intelligence, in the last decades, and new results
appear almost every week in the last few years.

Thus, this edited book strives to provide a timely review and summary of the
state-of-the-art developments in nature-inspired computation, with emphasis on
navigation and routing problems. The topics include navigation in animals, navi-
gation algorithms, nature-inspired algorithms, travelling salesman problem, vehicle
routing problems, underwater vehicle path planning, flow shop scheduling, indus-
trial crane path planning, mobile robot path planning, smartphone indoor local-
ization and others. Therefore, this book will be useful to students, lecturers,
researchers and professionals in computer science, management science, logistics,
operations research and industrial applications.
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Chapter 1
Navigation, Routing and Nature-Inspired
Optimization

Xin-She Yang and Yu-Xin Zhao

1 Introduction

Navigation and routing problems are two classes of challenging problems, but we
have to solve such problems in practice because they are relevant to many real-
world applications. Navigation and migration in animals are both inspiring and in-
teresting. Birds, insects and mammals use various cues for navigation and foraging
[1, 2]. Navigation has been an important part of human activities since the dawn of
civilization.

Navigation has become even more important, and closely linked to routing in
daily life. For example, we often use navigation apps for driving and path planning.
Airlines, postal services and logistics all have to solve complicated routing problems
with dynamic information, subject to uncertainties such as weather conditions, traffic
conditions and fluctuated demands.

Many successful characteristics in animals and biological systems have inspired
researchers to design algorithms, and such nature-inspired algorithms can be effec-
tive to solve optimization problems, navigation and routing problems. Most of such
algorithms are nature-inspired, population-based algorithms, often based on swarm
intelligence [3, 4].

This chapter provides an overview of navigation, routing and optimization, with
a focus on the introduction to nature-inspired algorithms.
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2 Navigation in Animals

The literature on animal navigation and migration is vast, which can span a few
subjects such as biology and neuroscience. Here, we only briefly outline some basic
features in animal navigation.

Animals have ingenious ways of finding ways, and they use different kinds of
cues for navigation [1, 5, 6]. A well-known example is that bats and dolphins use
echolocation. Bees can use sunlight, light polarization and even the Earth’s magnetic
field for navigation and foraging [7], while homing pigeons can use not only light
and magnetic field, but also visual landmarks, olfaction and even gravity anomalies
[8, 9]. In addition, African dung beetles can even use star light and the Milky Way
for navigation [10]. Obviously, to understand how they actually carry out navigation
by different cues requires more advanced cognitive neurological studies [2].

Loosely speaking, animal navigation and migration can use various cues and
information. For example, as early as 1873, Charles Darwin proposed the concept of
dead reckoning or path integration [11], which implies that certain animals can do
a running computation of their current locations, based on the speeds and directions
of their past moves in their trajectories. It is believed that humans, ants and bats can
navigate by path integration [12].

In addition, the Earth’s magnetic field can be used as a magnetic compass for path
integration [9, 13]. Furthermore, some animals can sense weather conditions such
as rains and winds, jet screams, and ocean currents, and use them for navigation and
migration [14].

The main navigation characteristics and cues, together with examples, are sum-
marized in Table1.

The study of animal navigation and migration is a vast subject with a rich set of
literature. For detailed reviews on these topics, readers can refer to more specialized
literature [1, 2, 6]. Now, we focus on the travelling salesman problems, routing and
nature-inspired computation.

Table 1 Examples of animal navigation with various cues

Cues/information Examples

Sunlight (sun compass) Almost all animals (mammals, birds, insects . . .)

Moon and stars Most animals, birds such as warblers, dung beetles

Polarized light Bees, pigeons, . . .

Landmarks Humans, pigeons, whales

Magnetic field Bees, bats, mole rats, sea turtles, some bacteria

Scent/Olfaction Ants, pigeons, salmons

Echolocation Bats, dolphins

Gravity variations Pigeons

Path integration (dead reckoning) Humans, ants, birds, rodents, . . .
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3 Navigation, Routing and Optimization

Routing and navigation are closely linked to optimization. Loosely speaking, nav-
igation in nature is mainly to find the shortest path from the current position after
foraging to the home position such as nests. Navigation and routing in modern set-
tings can include a vast range of applications such as shipping across seas, road
navigation via global position systems, routing of vehicles such as trucks and lorries
for goods delivery and pickup, airline routing and many others. The main aim is to
optimize a certain cost function, such as the minimization of the overall distance,
transport costs and the travel time. Mathematically speaking, they can be formulated
as optimization problems, and thus optimization algorithms and techniques can be
used to solve such problems.

3.1 Optimization

An optimization problem consists of a set of design parameters or decision variables
xi (i = 1, 2, . . . , D), which form a decision or design space spanned by vectors in
the form of x = (x1, x2, . . . , xD) ∈ R

D . The aim is to either minimize or maximize
the cost or objective function f (x), subject to some equality and inequality con-
straints. The optimal solution is a specific set of solutions (often a single solution)
that can globally minimize or maximize f (x), and such solutions should satisfy all
the constraints.

In general, an optimization problem can be formulated as

minimize f (x), (1)

subject to
hi (x) = 0, (i = 1, 2, . . . , I ), (2)

g j (x) ≤ 0, ( j = 1, 2, . . . , J ), (3)

where hi and g j are the equality constraints and inequality constraints, respectively.
Asmaximization problems canbe converted intominimization by simplymultiplying
the objective by −1, we can formulate all optimization problems as minimization.

If problem functions f (x), hi (x) and g j (x) are all nonlinear, the problem be-
comes a nonlinear, potentially highly multimodal, optimization problem and it is
usually very challenging to solve. If the search domain is relatively regular, and
problems functions are sufficiently smooth, traditional methods can be used, includ-
ing quadratic programming, interior-points, trust-region method and other [15]. In
case of all functions are linear, it becomes a linear program. If the domain is convex
and the objective is also convex, it becomes a convex optimization problem, and
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thus can be solved efficiently. A recent trend is that nature-inspired algorithms for
optimization are also widely used [16].

If decision variables xi can take only discrete values, the optimization problem
becomes a discrete optimization problem. In case of xi can only take integer values,
such optimization is called integer programming. If some variables are discrete, while
others are continuous, the optimization problem becomes a mixed integer program.
Both mixed integer programming and integer programming are discrete or combina-
torial optimization problems that are challenging to solve. Existingmethods can only
deal with small-scale problems. For large-scale combinatorial problems, there are
no efficient methods, and thus approximation methods, heuristic and metaheuristic
algorithms become useful alternatives [4].

3.2 Travelling Salesman Problem

The travelling salesman problem (TSP) is a well-known combinatorial optimization
problem where there are n cities, and the aim is to visit each city exactly once with
the shortest possible overall distance [17, 18]. Extensive literature exists for TSP as
it relates to many important problems. Different formulations can focus on different
aspects, butwewill use a binary integer linear program, first formulated byG.Dantzig
et al. in 1954 [18].

Let us label the n cities as i = 1, 2, . . . , n. Each city can be considered as a node
and all the cities and their links (routes as edges) form a graph. If a path from city
i to city j is taken, we can use a binary decision variable to record this as xi j = 1,
while xi j = 0 means there is no direct connection between i and j for this particular
route.

Let us denote all the cities as a set C and all the connections as the set P . The
distance between any two city is di j , which should be symmetric d ji = di j . Thus,
the minimization of the total travel distance is to

minimize
∑

i, j∈P,i �= j

di j xi j , xi j ∈ {0, 1}. (4)

The requirement of visiting each city exactly once means that

n∑

j=1

xi j = 1, (i ∈ C, i �= j),
n∑

i=1

xi j = 1, ( j ∈ C, j �= i), (5)

which is equivalent to the case that there is exactly one edge entering a city and
exactly one leaving the same city.

For the standard TSP, unconnected subtours are not allowed. This means that
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∑

i, j∈S
xi j ≤ |S| − 1, (6)

where 2 ≤ |S| ≤ n − 2, and |S| is the cardinality of any subset S ∈ C .
This is a binary integer linear programming problem, but it is non-deterministic

polynomial-time (NP) hard [17]. For NP-hard problems, there are no efficient algo-
rithms in the current literature. However, there are some exact methods (for small-
scale problems) and approximation methods for slightly larger-scale problems [17].
For example, the cutting plane method and linear programming relaxation meth-
ods can be used to obtain good solutions. In addition, heuristic and metaheuristic
approaches are also now widely used.

3.3 Routing Problems

Routing problems concern many applications, including airline path planning, rout-
ing of delivery trucks, postal services and others. Among the routing problems,
vehicle routing is an important class with many variants [19–22]. Vehicle routing
problems (VRP) can be considered as an extension to the TSP with multiple sub-
tours that all come to the same depot and each vehicle has a limited capacity. In
practice, there are many different vehicle types with different capacities, but for sim-
plicity, here, we assume that all the vehicles belong to the same type with the same
fixed capacity C . It is worth pointing out that the TSP can be considered as a special
case of a VRP with an unlimited capacity C = ∞. That is, all goods can be loaded
on a single vehicle and thus the VRP becomes a standard TSP.

There are many different ways for formulating a vehicle routing problem, and
different formulations can take very different forms [19–21, 23]. Here, we use a
relative general vehicle flow formulation, based on Munari et al. [20] where there
are n customers each with a demand quantity Qi > 0 (i = 1, 2, . . . , n). The goods
will be delivered by the same type of vehicle, each with the maximum capacity C .
As there is a capacity constraint, the VRP is also called capacitated vehicle routing
problem (CVRP) in the literature.

The transport costs ti j are the cost (or time) sum of the route taken from node i
(customer i) to node j (customer j). The decision variable xi j is a binary variable, in
the same way as in the TSP. Thus, xi j = 1 means the route is from i to j , otherwise
xi j = 0.

For simplicity,weuse the sameconvention given in [20]where the depot is denoted
as i = 0 and i = n + 1, whichmeans that a route starts with the depot i = 0 and ends
with the same depot i = n + 1. This notation makes the formulation much easier to
understand. However, to be consistent, it requires that Q0 = 0 and Qn+1 = 0; that
is, there is no demand at the depot.

Therefore, the objective function is
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Minimize
n+1∑

i=0

n+1∑

j=0

ti j xi j . (7)

To guarantee that each customer is only visited once, it is required that

n+1∑

j �=i, j=1

xi j = 1, (i = 1, 2, . . . , n). (8)

Similarly, we have to ensure that the route goes to the same customer i must come
out exactly once, which requires

n∑

i=0,i �=k

xik −
n+1∑

j=1, j �=k

xk j = 0, (k = 1, 2, . . . , n). (9)

Obviously, the maximum number of routes allowed is limited by the number Nv of
available vehicles. That is

n∑

k=1

x0k ≤ Nv. (10)

In order to consider the demands and capacity consistently, we now use a cumu-
lated demand ξ j on the route leading to the current visit of customer j [20], and this
quantity is also linked to the load left in the vehicle up to the current visit. This means
that

Qi ≤ ξ ≤ C, (capacity should not be exceeded), (11)

and
(ξ j − ξi ) + C(1 − xi j ) ≥ Q j xi j , (12)

which gives (ξ j − ξi ) ≥ Q j if xi j = 1. This means that there is enough load left to
satisfy demand Q j . In case this route is not taken (xi j = 0), we have (ξi − ξ j ) ≤ C
that satisfies the capacity constraint. In addition, this equation can also avoid any
subtours that potentially go through the depot multiple times [21].

In the real-world applications, different factors and constraints can come into
play. Thus, there is a spectrum of different VRP variants [21, 22]. We do not intend
provide a detailed review here. Instead, we briefly outline some VRP variants:

• VRP with time windows (VRPTW): If the delivery of goods to a customer i is
constrained by a time window [Si , Ei ], not before a starting time Si and not after
an end time Ei , then the VRP becomes a VRP with time windows (i.e., VRPTW).

• VRPwith pickup and delivery (VRPPD): In addition to the delivery tasks, if pickup
tasks are added, the VRP becomes a VRP with pickup and delivery.
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• VRP with last in first out (LIFO): In certain loading conditions and packaging
requirements, the goods loaded in last may be unloaded first. This will complicate
the delivery conditions with added constraints.

• Rich VRP (R-VRP): If different types of vehicles with multi-attributes are in-
volved, the VRP becomes a rich VRP and its mathematical formulation may be-
come much more complicated [22, 24, 25].

• Open VRP: In some applications, the vehicles may not need to return to the main
depot after delivery, thus the routes become open, not closed in this case. Conse-
quently, the mathematical formulation will be different.

• Dynamic VRP: As the demands can be dynamic and traffic conditions are time-
varying, the VRP will become dynamic if any dynamically varying constraints are
added. Such dynamic VRPs may become very challenging to solve.

There are other variants such as heterogenous VRPs, variable cost VRPs, forbid-
den pathVRPs and others [24, 25]. As theseVRPs are typicallyNP-hard, the solution
methods tend to be approximate and heuristics. In recent years, nature-inspired algo-
rithms have shown to be effective. For example, Osaba et al. considered a newspaper
delivery system with recycling policy [26], and they used a discrete firefly algorithm
(DFA) to solve it with good results. In the rest of this chapter, we will focus on the
brief review of nature-inspired optimization algorithms [4].

4 Nature-Inspired Algorithms for Optimization

The literature of nature-inspired algorithms has expanded significantly in recent
years [4], thus it is impractical to review all relevant studies. Instead, we only outline
a few algorithms so as to highlight the main ideas and search mechanisms.

4.1 Deterministic or Stochastic

Before we introduce any nature-inspired algorithms, let us consider a key question
about deterministicity and stochasticity in algorithms.

Loosely speaking, traditional algorithms are mostly deterministic without any
randomness, which means that such algorithms have high exploitation capability,
but low exploration capability. In contrast, nature-inspired algorithms always use
some randomness and thus become non-deterministic. However, their exploration
capability is enhanced, but exploitation capability is reduced [27]. However, there
should be a fine balance, though such balance can be difficult to find and it may be
problem-specific [28].

Therefore, when we use nature-inspired algorithms, we should bear in mind that
randomness is an intrinsic part of such algorithms, and consequently, multiple runs
and some parameter tuning are needed to ensure the consistency and quality of the
final solutions.
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4.2 Genetic Algorithms

Among nature-inspired algorithms, the genetic algorithm (GA) was probably the
most well-known example. GA was developed by John Holland [29], which is an
evolutionary algorithm.

Solution vectors to an optimization problem are encoded as binary strings of 0s
and 1s, called chromosomes. Three genetic operators are used to modify the strings,
and they are crossover, mutation and selection [4, 30]. Two new (child) solutions
are produced via crossover where the solution strings from two parent solutions are
mixed and exchanging corresponding segments. Mutation is also used to generate a
new solution by mutating one bit, or multiple bits at multiple locations, of an existing
solution as a binary chromosome.

The quality of a solution is determined by its fitness, which is a normalized value,
proportion to the objective values for maximization problems and inverse proportion
to these values forminimization problems. In addition, a selectionmechanism is used
so that the fittest individual or solution should be passed onto the next generation.

Though the details may depend on the actual implementations, crossover tends to
occur more often, with a higher probability of typically 0.6 to 0.95, while mutation
tends to be less frequent, with a much lower probability from 0.001 to 0.05.

There is no explicit mathematical equation in genetic algorithms, it is a detailed
algorithmic procedure and thus many different variants exist in the literature [30].

4.3 Ant Colony Optimization

The ant colony optimization (ACO)was the first swarm intelligence-based algorithm,
and was developed by Marco Dorigo in 1992 [31]. In essence, ACO intends to sim-
ulate the behaviour of social ants in a colony, and pheromone is used for simulating
local interactions and communications among ants. Pheromone is deposited by each
ant, which also gradually evaporates with time. The exact form of evaporation model
may vary, depending on the variant and form of ACO used in implementations. Typ-
ically, incremental deposition and exponential decay of pheromone are implemented
in most studies.

For the TSP and routing problems, a solution is encoded as a path or route, and
each ant will explore the possible routing networks independently. A route is marked
by pheromone deposited by ants going through the route. The quality of a route
(a solution) is related to the pheromone concentration on the path. As pheromone
will evaporate with time, the pheromone concentration will vary, depending on the
detailed history of antmovements. At a junctionwithmultiple possible routes, a route
with the highest concentration of pheromone is preferred. However, a particular route
is chosen with a probability, and this probability is determined by the normalized
concentration of the route, the desirability of the route (such as the overall path
distance) and relative fitness of this route, comparing with all others.
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Similar to the genetic algorithm, there is no algorithmic equation forACO in terms
of the positions and moves of the ants. However, their movements are described as a
mixed of procedure, in combination with the pheromone deposition and evaporation.
Thus, there are many variants [31].

4.4 Particle Swarm Optimization

As a swarm intelligence-based algorithm, particle swarm optimization (PSO) was
developed by Kennedy and Eberhart in 1995 [3], which simulates the swarming
characteristics of birds and fish. In PSO, there is a population of n particles.

If the position and velocity of a particle are denoted by xi and vi , respectively, the
position vector can be considered as a solution vector to an optimization problem.
For each particle, its position and velocity at any iteration t (or pseudo-time t) will
be updated iteratively as follows:

xt+1
i = xti + Δt vt+1

i , (13)

and
vt+1
i = vt

i + αε1[g∗ − xti ] + βε2[x∗
i − xti ], (14)

where ε1 and ε2 are two uniformly distributed random numbers in [0,1]. The time
increment Δt = 1 can be used because all iterative systems can be considered as a
discrete system with unit time increments. In addition, the best solution g∗ is the
fittest solution among all the particles in the population. Each particle has a short
memory to record its individual best solution x∗

i during the iteration history. Here,
parameters α and β are often referred to as learning parameters, and their values
are usually in the range of [0,2]. It is worth pointing out that the notation t is for an
iteration counter (or pseudo-time t). It should not be confused with an exponent.

There are many variants of PSO, and some variants introduced an inertia weight
parameter (adding a mass to each particle), leading to a more stable PSO variant.

4.5 Firefly Algorithm

Firefly algorithm (FA) is also a swarm intelligence-based algorithm, developed by
Xin-She Yang in 2008, inspired by the swarming behaviour and light-flashing char-
acteristics of tropical fireflies [32]. A solution vector to an optimization problem is
represented as the position of a firefly. With a population of n fireflies, a swarm of
solutions will evolve according to the governing equation in FA. In fact, FA can be
considered as a nonlinear system and its nonlinearity comes from the variation of
light intensity in terms of the inverse-square law and the exponential decay of light
due to absorption.
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The position vector xi of firefly i at iteration t is updated by

xt+1
i = xti + β0e

−γ r2i j (xtj − xti ) + α εti , (15)

where β0 > 0 is the attractiveness of a firefly at the zero distance (i.e., ri j = 0).
In addition, α is a scaling factor controlling the step sizes or strength of random
perturbations. In the attraction term, the factor γ in the exponent is a parameter,
which should be linked to the scales of the problem under consideration because this
parameter essentially controls the visibility of the fireflies.

A useful property of the FA as a nonlinear system is that the population initially as
a single swarm can subdivide into multiple subgroups or sub-swarms, which arises
from the fact that long-distance attraction is weaker than short-distance attraction.
As each sub-swarm can swarm potentially around a local mode (including the mode
with the global optimality), FA can be naturally suitable for multimodal optimization
problems [33].

4.6 Cuckoo Search

The cuckoo search (CS) algorithm was developed by Xin-She Yang and Suash Deb
in 2009 [34]. CS was based on the brooding parasitism of some cuckoo species who
lay their eggs in the nests of host birds such as warblers. In the real cuckoo–host
species system, the eggs laid by cuckoos are sufficiently similar to the eggs of the
host species. Cuckoos’ eggs can be discovered and abandoned with a probability pa .

There are n eggs in the CS system. If we encode the position of an egg as a solution
vector xi to an optimization problem, the similarity of two eggs (solutions xi and x j )
can be roughly measured by their difference (x j − xi ). Thus, the position at iteration
t can be updated in the following way [35]:

xt+1
i = xti + αs ⊗ H(pa − ε) ⊗ (xtj − xtk). (16)

Here, the discovery of a cuckoo’s egg is simulated by a simple Heaviside function
H(u) by drawing a random number ε from a uniform distribution, and s is the step
size. Here, the notation ⊗ denotes an element-wise multiplication.

A distinct feature of the host birds is that they may abandon their nests and fly
away if they suspect their eggs were replaced or contaminated. This can bemimicked
as a step size s by Lévy flights [36, 37]:

xt+1
i = xti + αL(s, λ), (17)

where the Lévy flights are realized by drawing random numbers from

L(s, λ) ∼ λ	(λ) sin(πλ/2)

π

1

s1+λ
, (s 
 0). (18)
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In addition, α > 0 is the step size scaling factor.
A main advantage of using Lévy flights is that a fraction of steps or moves gen-

erated by Lévy flights are much larger than those used in Gaussian [36], which can
enhance the exploration ability of the CS since search steps in CS are heavy-tailed
and potentially more effective [33, 35, 38].

4.7 Bat Algorithm

The bat algorithm (BA) is also swarm intelligence-based algorithm, developed by
Xin-She Yang in 2010. BA intends to mimic some characteristics of echolocation of
microbats and their frequency-tuning ability [39, 40]. Both the pulse emission (with
a rate r ) and loudness A are used to partially control exploration and exploitation.

In BA, the position of a bat is used to represent a solution vector, and a set of n
solutions form the population. The update of the position vectors is carried out by

fi = fmin + ( fmax − fmin)β, (19)

vt
i = vt−1

i + (xt−1
i − x∗) fi , (20)

xti = xt−1
i + vt

i , (21)

where the frequency varies randomly from fmin to fmax by drawing a random number
β ∈ [0, 1].

In addition, the loudness A(t) of each bat should vary from a high value to a lower
value when zooming towards a promising region, while the emission rate r should
vary at the same time from a lower value to a higher value. This means that

At+1
i = αAt

i , r t+1
i = r0i (1 − e−γ t ), (22)

where the two parameters 0 < α < 1 and γ > 0 control the exact form of actual vari-
ations. In general, both numerical experiments and empirical observations suggested
that BA could have a faster convergence rate in comparison with PSO. Recently, the
standard BA has been extended to multiobjective optimization and hybrid versions
[40].

4.8 Flower Pollination Algorithm

The flower pollination algorithm (FPA) is amulti-agent, population-based algorithm,
based on the pollination characteristics of flowering plants [4, 41], though FPA is
not a swarm intelligence-based algorithm. There are two main search mechanisms
in the FPA, which mimic the main features of both biotic and abiotic pollination. In
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addition, FPA also includes the flower constancy due to the co-evolution of some
flower species with their corresponding pollinators such as insects.

If the position of a pollen particle is represented as a solution vector xi , then the
moves of pollen can be simulated by the global search

xt+1
i = xti + γ L(λ)(g∗ − xti ), (23)

where γ is a scaling parameter and g∗ is the best solution found so far at iteration
t . Here, the random vector L(λ) should be drawn from a Lévy distribution, and this
distribution is typically characterized by exponent λ [36].

The current solution xti can also be modified by local search or moves

xt+1
i = xti +U (xtj − xtk), (24)

where U is drawn from a uniform distribution in [0, 1]. This search mechanism
mimics local pollination and flower constancy. Metaphorically speaking, xtj and xtk
can be considered as solutions representing pollen from different flower patches.

4.9 Other Algorithms

The above algorithms are mostly swarm intelligence-based algorithms, which have
some sort of the main characteristics of swarm intelligence [42, 43]. Obviously, there
are many other nature-inspired metaheuristic algorithms, including the artificial bee
colony, differential evolution [44], gravitational search, artificial immune system
and others. Interested readers can refer to more specialized literature such as journal
articles and books [4, 33].

In the rest of this chapter, wewill briefly discuss themain characteristics of nature-
inspired algorithms and then focus on the solution representations and discretization
of algorithms for continuous optimization.

5 Algorithmic Characteristics

Extensive studies have shown that the algorithms we have discussed and other al-
gorithms can work well in practice. However, their mathematical analysis requires
a more rigorous, formal approach, and there are still many open questions [28]. Ob-
viously, there are different ways of analysing such algorithms [4, 27, 28], we will
discuss the main characteristics of these algorithms.

5.1 Characteristics

Now, let us first look qualitatively at these nature-inspired algorithms by focusing
on their search mechanisms, basic steps and algorithm dynamics.
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Table 2 Characteristics and their role in nature-inspired algorithms

Algorithmic components Role (or Properties)

Population/multiple agents Diversity, sampling in search space

Randomization/modifications Perturbation of states, escape local optima

Elitism, selection Driving force for evolution, leading to convergence

Iterative update equations Evolution of solutions as a time-discrete system

• All these algorithms use a population with multiple agents (e.g., particles, ants,
bats, cuckoos, fireflies, bees, etc.), each agent represents a solution vector. The
evolution of the population is often achieved by some operators (e.g., mutation,
crossover), often in terms of some algorithmic formulas or equations.

• All algorithms have certain forms of both local and global search. Modifications
and perturbations of existing solutions in the population are achieved by random-
ization with selection, biased towards solutions with higher fitness. Darwinian
principle of the ‘survival of the fittest’ is used for selecting the better or best
solution among the population.

• The evolution of solutions is iterative, leading to the evolution of solutions with
varying properties. When all solutions become similar, the system may lead to
some self-organized states or converged states. A converged population consists
of some organized structure, though the diversity has been reduced.

Such characteristics and behaviour can also be analysed from the self-organization
point of view [45, 46]. In fact, algorithms and self-organization systems have many
similarities. These basic components and their role or properties can be summarized
in Table2.

It is worth pointing out that there is no free lunch in algorithms [47], and there is
no single best algorithm that can solve all the problems. Thus, one of the main tasks
of research is to identify what types of problems an algorithm can solve and what
algorithm(s) should be used for a given type of problems.

5.2 Discretization and Solution Representations

Most nature-inspired algorithms were originally designed for solving optimization
problems with continuous variables. For discrete and combinatorial optimization
problems, the variables are discrete. Thus, we have to convert the standard algorithms
such as the firefly algorithm and cuckoo search algorithm into their discrete versions.

One way to discretize a continuous variable x is to use the sigmoidal or logistic
function

S(x) = 1

1 + e−x
, (25)
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which is an S-shaped function. It essentially converts a continuous variable x into a
binary variable S when |x | is large.

However, this is not easy to implement in practice. So a random number r ∈ [0, 1]
is usually generated and used as a conditional switch. That is, if S(x) > r , u = 1,
otherwise u = 0, which gives a binary variable u ∈ {0, 1}. Once we have a binary
variable u ∈ {0, 1}, we can convert it to binary variables with other discrete values.
For example, we can use y = 2u − 1 ∈ {−1,+1}.

It is worth pointing out that a useful property of S(x) is that its derivative can be
computed by multiplication

dS

dt
= − 1

(1 + e−x )2
(−e−x ) = 1

1 + e−x
· e−x

1 + e−x

= 1

1 + e−x
· [(1 + e−x ) − 1]

1 + e−x
= 1

1 + e−x
· [1 − 1

1 + e−x
] = S(1 − S). (26)

Another way for discretization is to use round-up operations to get integer values.
For example, we can use

y = �x�, (27)

to convert x to integer y.
Alternatively, we can convert a continuous variable into m discrete integers by

using a mod function
y = �x + k�mod m, (28)

where k and m > 0 are integers.
Sometimes, a so-called random key can be used to generate a set of discrete values

for nodal numbers (as in the travelling salesman problem) and customer numbers in
routing problems. For example, a random key

x = [0.91, 1.1, 0.14, 0.09, 0.77,−0.23, 0.69], (29)

can be converted to
J = [6, 7, 3, 2, 5, 1, 4]. (30)

This is done by ranking the real number vector x first, and then transforming them
into labels of ranks. In some applications, such continuous numbers are drawn from
a uniformly distributed in [0,1]. For example, we have

⎡

⎣
Real numbers 0.65 0.25 0.37 0.04 0.89

↓ ↓ ↓ ↓ ↓ ↓
Random keys 4 2 3 1 5

⎤

⎦. (31)

Such random-keys-based approaches have been applied in many applications such
as the travelling salesman problem (TSP) and vehicle routing problems [26, 33].
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For TSPs and routing problems, there are many different ways of generating new
routes and adjacent routes, including 2-opt, 3-opt and k-opt moves. Different metric
measures such as Hamming distances can also be defined. We will not introduce
them here, and interested readers can refer to more advanced literature [17, 21].

6 Conclusions

In this chapter, we have briefly introduced some interesting characteristics of animal
navigation andmigration.We have also discussed the relationship among navigation,
routing problems and optimization. Then, we have introduced some of the widely
used nature-inspired algorithms for optimization, followed by the representations of
solutions for discrete optimization.

The applications of these algorithms are diverse, and more applications will be
introduced in the other chapters of this book. It is hoped this brief overview can
inspire more research, concerning navigation, routing problems and nature-inspired
computation.
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Chapter 2
Navigation and Navigation Algorithms

Yu-Xin Zhao and Ri-Xu Hao

1 Navigation Introduction

The development of navigation technology stems from the need for identifying direc-
tion and position in both the military and production activities of human society.
With the advancement of society and the improvement of productivity, the space for
human activities is constantly expanding, causing the requirements for navigation to
be higher and higher. This is a huge traction force in the development of navigation
technology. This chapter mainly introduces the basic concepts of navigation, the
development history, and the main navigation algorithms.

1.1 Navigation Origin

Navigation comes with the emergence of political, economic, and military activities
and continues to evolve with the development of these fields. With the continuous
expansion of human activity and the continuous improvement of the vehicles used,
the requirements for navigation are getting higher and higher.

Ancient peoplemostly lived along rivers. The initial range of human activities was
mainly limited to the ancient Yellow River basin, Indus River basin, Mediterranean
Sea, and Persian Gulf coast. By utilizing fire and stone axes, in order to meet the
needs of fishing and river crossing, human beings created the earliest means of water
transportation-canoe. With canoes, people’s range of activities had expanded. From
then on, they could cross the waters to explore far away. Vehicles were created to
meet needs, the original canoes and bamboo rafts for people’s exploration and fishing
needs, and gradually to larger vessels and warships to meet the needs of explorers for
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longer voyages and wars. Until the mid-eighteenth century, transportation still relied
mainly on human, animal, and wind power, and its development was relatively slow.
At the beginning of the nineteenth century, the emergence of steam power led to
the design of trains and ships, which greatly promoted the development of maritime
and rail transport. At the end of the nineteenth century, a large number of vehicles
were put into use to further boomed land transport. The rise of air transport in the
early twentieth century has greatly accelerated the rhythm of human economic and
military activities.

In order to meet the need for human beings to carry out economic, military and
scientific research activities underwater, on land, in the air, and in outer space, a
variety of vehicles are needed, such as land vehicles, ships, aircraft, rockets, satellites,
and spacecraft. To ensure that vehicles and people reach their destinations safely and
accurately, we require precise navigation information.

1.2 Navigation Definition

Navigation is a subject that studies the theory, technology, and methodology for
determining the position, velocity, azimuth, and attitude of a moving vehicle, record-
ing, planning, and controlling the behavior path of the vehicle. Its development is
caused by the intersection of multiple disciplines such as aerospace, communica-
tions and electronics, computers, and geodesy. Navigation has gradually formed an
engineering discipline with relatively complete theory and technology system. With
the development and progress of science and technology, navigation connotation and
extension are enriched and developed, which is an emerging discipline with broad
development prospects and application requirements.

The basic tasks of navigation include:

1. Guiding the vehicle to enter and navigate along the scheduled route.
2. Guiding the vehicle to safely land or enter the port at night while under various

weather conditions.
3. Provide other guidance and information consulting services needed for the

vehicle to complete the navigation task accurately and safely.
4. Determine the current position of the vehicle and its navigation parameters.

A system that can complete the above navigation tasks is called a navigation
system.

1.2.1 Positioning

Positioning is the process of determining the absolute or relative position of a space
target with a given reference by some technical means. The positioning process is
used to determine the space position of the vehicle, that is, the direction, pitch angle,
and distance parameters of the vehicle, but not the velocity or attitude.
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The direction and pitch angle measurements can be achieved by relatively sim-
ple techniques, such as theodolites and magnetic compasses. Similar to terrestrial
landmarks, the sun, moon, and stars can also be used as reference objects.

Range measurements can be achieved by radio signal, laser, or radar. In passive
ranging systems, the user receives the transmitting signal from the radio navigation
station. In active ranging systems, the user transmits the signal to the reference object
and receives the transmitting signal or the response signal from the reference object.

The parts outside of the user equipment in the position fixing system are called the
auxiliary navigation facilities, which may include landmarks and radio navigation
stations. After obtaining the measured value of the specific direction, the position of
the reference point is also needed to determine the user’s position.When the reference
point is a radio navigation transmitter, its position can be broadcasted directly or
identified by radio frequency. When the reference point is not a special transmitter,
the reference point must be identified by manual participation or automatic feature
matching technology.

1.2.2 Navigation

So far, the definitions of navigation have varied among different people in the world.
There is no universally accepted and strict definition of navigation in academic cir-
cles. Some are confined to the old concept of navigation, which has nomodernmean-
ing, while others expand the field of navigation to other areas beyond the scope of the
field of navigation. The definition of navigation before the age of general navigation
cannot contain some of the concepts of modern navigation, but it goes beyond the
real meaning of navigation itself to define navigation with all the functions of mod-
ern navigation equipment. With the development of science and technology, some
devices in navigation systems are likely to accomplish many functions beyond nav-
igation and can even be connected with other categories such as communications,
weapons and equipment, and management. However, the definition of navigation
cannot contain these concepts indefinitely.

The Concise Oxford Dictionary defines navigation as: “Methods for determining
the position and course of amotion vector by anymeans such as geometry, astronomy,
and radio signals.” That is, a combination of one or more methods of geometric,
astronomical, radio signal, and feature matching, to determine the position, velocity,
and attitude of the motion carrier and to perform route planning techniques.

The parameters required to complete the navigation task during the navigation
process include the position, velocity, and attitude of the motion carrier, the most
important of which is the carrier’s position parameter. Navigation consists of two
concepts. Firstly, determine the position and the velocity of themotion carrier relative
to the reference frame. Secondly, plan andmaintain the route from the departure point
to the destination. Themost efficientmethod and the required navigation performance
are used to guide the navigation process and avoid obstacles and collisions. It also
could be called guidance, pilot, or path planning for different types of vehicles [1].
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In this book, we define navigation as the path planning technique for different
types of carriers in complex environments.

1.2.3 Path Planning

Sequential points or curves connecting the starting and ending positions are called
paths, and the strategy of constructing paths is called path planning. According to
the grasp degree of the environmental information, path planning can be divided into
global path planning based on prior complete information and local path planning
based on sensor information. From the perspective that the obstacle information
obtained is static or dynamic, global path planning belongs to static planning and
local path planning belongs to dynamic planning. Global path planning needs to
master all of the environmental information and plans paths according to all of the
information on the environmental map. In order to select the optimal path from the
current node to a sub-target node, local path planning only needs sensors to collect
real-time environmental information, understand environmental map information,
and determine the position of the map and its local obstacle distribution.

According to the information characteristics of the research environment, path
planning can also be divided into path planning in discrete domains and path planning
in continuous domains. The path planning problem in a discrete domain belongs to
one-dimensional static optimization problems, which is equivalent to the route opti-
mization problem simplified by environmental information, while the path planning
problem in continuous domains is a problem in the continuous multi-dimensional
dynamic environment.

Path planning in continuous domains includes three steps: environment modeling,
path searching, and path smoothing.

1. Environmental modeling. Environmental modeling is an important part of path
planning. Its purpose is to establish an environment model which is convenient
for computers to use in path planning. The actual physical space is abstracted
into an abstract space that the algorithm can handle, and the mutual mapping is
realized.

2. Path search. In the path search stage, the corresponding algorithm is applied to
find a path based on the environment model to obtain the optimal value of the
predetermined performance function.

3. Smooth path. The path searched by the corresponding algorithm is not a neces-
sarily feasible path for a moving body to walk. Further processing and smoothing
are needed to make it a practical and feasible path.

There are many methods of path planning. According to its own advantages and
disadvantages, its scope of application is also different. Based on the research of
common path planning algorithms in various fields, the time sequence of discov-
ery, and the basic principle of the algorithm, the algorithm can be roughly divided
into two categories: traditional algorithms and heuristic algorithms. Among them,
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heuristic algorithms include the ecosystem algorithm, swarm intelligence algorithm,
evolutionary algorithm, and artificial intelligence algorithm [2].

Ecosystem algorithms include the biogeography-based optimization and invasive
weed optimization algorithm. Ecosystem algorithms provide the basic method of
modeling, but the graphics method generally has a shortage of search ability. It often
needs to combine special search algorithms to solve the problem inefficiently.

Swarm intelligence algorithms include the ant colony algorithm, particle swarm
optimization, firefly algorithm, artificial bee colony algorithm, bat algorithm, and
cuckoo search algorithm. The intelligence inspiration from nature swarm plays an
important role in dealing with the path planning problem under complex dynamic
environment information.

Evolution algorithms include genetic algorithms, differential evolution algo-
rithms, harmony search algorithms, and differential evolution algorithms. Evolu-
tionary algorithms come from the inheritance, evolution, and variation of natural
organisms. These play a role in path planning under complex dynamic environment
information.

Artificial intelligence algorithms include the neural network algorithm and deep
learning algorithm. The neural network algorithm has excellent learning ability and
strong robustness, but the poor generalization is its fatal disadvantage. Therefore,
the combination of neural network algorithm and other algorithms has become a hot
research topic in the field of path planning.

2 Development of Navigation

With the increasing complexity of terrestrial, oceanic, and aerospace environments
and the increasing performance of motion vehicles, the requirement of the navi-
gation system for motion vehicles in different environments is also increasing. It
requires not only higher positioning accuracy, faster dynamic response, and better
optimization capabilities of the navigation system, but also autonomous learning and
three-dimensional navigational abilities of the navigation system. Therefore, heuris-
tic algorithms such as the intelligent bionics algorithm and neural network algorithm
could be more widely used in navigation systems for moving vehicles in complex
environments.

In recent years, heuristic algorithms, especiallymeta-heuristic algorithmswith the
idea of natural evolution, have aroused an upsurge in the research of path planning
algorithms for navigation systems and have received high attention and tracking.
Compared with the traditional deterministic algorithms, heuristic algorithms have
been widely recognized and applied for their intuitive and effective solutions to the
navigation problem of moving vehicles in complex environments.

Although the theoretical basis of heuristic algorithms still needs to be developed,
the academic thought comes from the long-term observation and practice of physical,
biological, and social phenomena, as well as the deep understanding of these natural
laws. It is the crystallization of wisdom that human beings gradually learn from
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nature and imitate the operation mechanism of its natural phenomena. Therefore,
its scientific nature and development potential are self-evident. Since Alan Turing
first put forward the concept of the heuristic search in the process of deciphering
German passwords during the SecondWorldWar, the research of heuristic algorithms
has gone through four important stages: the initial stage, the low-speed stage, the
prosperous stage, and the blooming stage.

2.1 Initial Germination Stage

During the initial period of the 1940s and 1950s, the team of scientists represented by
Alan Turing innovatively put forward the heuristic search academic idea and applied
it to major engineering fields such as the design of an automatic computing engine,
which initiated the research work in this field.

In 1943,WarrenMcCulloch andWalter Pitts proposed anM-Pneuronmodel based
on biological neural network, which injected new vitality into the development of
evolutionary computing and artificial intelligence.

In 1950, Alan Turing published his article Computer Machines and Intelligence,
whichopened the pioneer of contemporary artificial intelligence science andprovided
a good conceptual basis for the study of intelligent algorithms in the twenty-first
century.

2.2 Low-Speed Development Stage

During the low-speed development period of the 1960s and 1970s, although
researchers paid more and more attention to the research of heuristic algorithms and
put forward optimization methods such as greedy algorithms and local search, there
was still no way to solve large-scale optimization problems due to the limitations of
computing conditions and theoretical development at that time.

In 1975, Professor J. Holland first proposed the classical genetic algorithm.
Genetic algorithms are computational models which simulate the natural selection
and genetic mechanism of Darwin’s biological evolution theory. Genetic algorithms
have beenwidely used in combinatorial optimization, artificial intelligence, and other
fields.

2.3 Prosperity and Active Stage

In the 1980s and 1990s, after ten years of low-speed development of heuristic algo-
rithms, the algorithm ushered in a period of prosperity and activity. The rapid devel-
opment of industry, the development of computational complexity theory, and the
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urgent need for industrial applications have greatly promoted the research of new
and effective search mechanisms and optimization strategies. Hence, the research of
heuristic algorithms is booming.

In 1983, S. Kirkpatrick and others successfully introduced the annealing idea
into the field of combinatorial optimization and proposed the simulated annealing
algorithm. The simulated annealing (SA) algorithm is a stochastic optimization algo-
rithm based on the Monte Carlo iterative solution strategy. Its advantage is that it can
effectively avoid falling into local minima and eventually reach global optimum by
giving the search process a time-varying probability jump that eventually tends to
zero.

In 1986, Fred Glover proposed a deterministic local minimal jump strategy, the
Tabu search algorithm. So far, the Tabu search algorithmhas achieved great success in
combinatorial optimization, machine learning, and neural networks. In recent years,
more research has been performed on the global optimization of functions, and there
is a great trend in its development.

In 1986, Rumelhart and McClelland proposed the back propagation (BP) neural
network. The BP neural network can classify arbitrary complex patterns, excel-
lent multi-dimensional function mapping ability, and a flexible network structure.
It is widely used in function approximation, combinatorial optimization, and data
compression.

In 1992,MarcoDorigofirst proposed the ant colony algorithm,whichwas inspired
by the behavior of ants in finding their way to food. This algorithm has the character-
istics of distributed computing, positive information feedback, and heuristic search
and is essentially a heuristic global optimization algorithm among the evolutionary
algorithm.

In 1995, Storn and Price proposed the differential evolution algorithm, an opti-
mization algorithm based on modern intelligence theory. The differential evolution
algorithm is mainly used to solve real-number optimization problems. It is a group-
based adaptive global optimization algorithm. Because of its simple structure, easy
implementation, fast convergence, and strong robustness, it is widely used in data
mining, artificial neural networks, and other fields.

In 1995, J. Kennedy proposed the particle swarm optimization algorithm. Particle
swarm optimization (PSO) is a kind of evolutionary algorithm, which attracts the
attention of academia for its advantages of easy implementation, high accuracy, and
fast convergence, and it shows its superiority in solving practical problems.

2.4 Blooming Stage

Since the beginning of the twenty-first century, the inspiration from nature continues
to give birth to the rapid development of heuristic algorithms. In the ten years at the
beginning of the century, scholars not only generalized the traditional optimization
algorithm, but also explored various novel heuristic algorithms. It is the traditional
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heuristic algorithm and the new heuristic algorithm that coordinate competition and
promote each other to set off the research climax in this field again.

In 2001, Geem Z W, a Korean scholar, proposed a novel intelligent optimization
algorithm, i.e., the harmony search algorithm. This method has been widely used in
the optimization of multi-dimensional and multi-dimensional extremum functions,
and it shows better optimization performance than genetic algorithms in solving
multi-dimensional function optimization problems.

The random leaping frog algorithm is a new sub-heuristic cooperative search
algorithm. It was first proposed by Eusuff and Lansey in 2003 to solve combinatorial
optimization problems. It has many advantages, such as being easy to understand,
being easy to program, and having a strong ability for direct optimization.

The artificial bee colony algorithm was proposed by Turkish scholar Karaboga in
2005. The algorithm has the characteristics of simple operation, few control param-
eters, high search accuracy, and strong robustness. It has been successfully applied
in many fields such as artificial neural network training, combinatorial optimization,
and power system optimization.

Inspired by the theory of biogeography, Simon proposed an intelligent optimiza-
tion algorithm named biogeography-based optimization in 2008, which has good
convergence and stability, based on studying the mathematical model of bio-species
migration.

In 2008, Xin-She Yang proposed an advanced heuristic algorithm, the firefly algo-
rithm, based on the simplification and simulation of firefly population behavior. The
algorithm has high search accuracy and a fast convergence speed. It is an effec-
tive swarm intelligence optimization algorithm to provide a new idea for intelligent
optimization.

In 2009, Xin-She Yang proposed the cuckoo search algorithm based on the
research of mathematical modeling, engineering optimization, and other fields. As
this algorithm is easy to understand, easy to implement, and excellent in the ran-
dom search path, it has been successfully applied to some difficult problems by
researchers.

In 2010,Xin-SheYang proposed the bat algorithm,which hasmade breakthroughs
in multi-objective optimization, engineering optimization, the knapsack problem,
classification, resource scheduling, and other fields. Compared with other bionic
algorithms, the bat algorithmhas the advantages of a simplemodel, fewer parameters,
strong robustness, andpotential distribution, and its performance is better thangenetic
algorithms and particle swarm optimization.

3 Navigation Algorithms

Nature is extremely diverse, dynamic, robust, complex, and fascinating; it provides
sufficient inspiration for humans to solve complex computing problems. The meta-
heuristic algorithm follows the natural law of “survival of the fittest” and realizes the
evolution of species mainly through selection and mutation. The choice is the basis
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of optimization, and variation is fundamental to random search or non-deterministic
search [3]. In the past few decades, a large number of research studies have been
concentrated in this field. According to the “survival of the fittest” strategy, many
meta-heuristic algorithms have been developed and widely used in computer net-
works, robots, control systems, parallel processing, data mining, and many other
areas [4, 5].

This section introduces the meta-heuristic algorithm from four aspects: ecosys-
tem simulation algorithms, group intelligence algorithms, evolution algorithms, and
artificial intelligence algorithms.

3.1 Ecosystem Simulation Algorithm

Learning from the nature system, people created several ecosystem simulation algo-
rithms such as the distribution of habitats of biological species, biogeography-based
optimization algorithm for migration and extinction, and an invasive weed optimiza-
tion algorithm that simulatesweed survival and evolution. Currently, these ecosystem
simulations and optimizationmethods have beenwidely used in science, engineering,
and other fields and have achieved encouraging results.

3.1.1 Biogeography Optimization Algorithm

In the nineteenth century, Alfred Wallace and Charles Darwin proposed the theory
of biogeography to study the distribution, migration, and extinction of the biological
species habitats. Inspired by the theory of biogeography, Simon proposed a new
intelligent optimization algorithm, biogeography-based optimization (BBO), based
on the study of mathematical models of biological species migration [6].

The basic idea of the BBO algorithm comes from the theory of biogeography.
In the BBO algorithm, biological species live in multiple habitats, each of which is
represented by the habitat suitability index (HSI). The factors associated with the
HSI are rainfall, vegetation diversity, landform, land area, temperature, and humidity.
This is called the appropriate index variable (AIV).

The HSI is one of the most important factors affecting the distribution and migra-
tion of species on habitats. There aremany species in higher HSI habitats; conversely,
there are fewer species in lowerHSI habitats. It can be seen that habitat HSI is directly
proportional to biodiversity. Due to the saturation of living space in high HSI habi-
tats, a large number of species will migrate out to adjacent habitats with a small
number of species moving in; low HSI habitats would have fewer species and more
species would move in and fewer species move out. However, when the habitat HSI
is kept at a low level, the species in the habitat tend to become extinct or find other
habitats, namelymutations.Migrations andmutations are important operations of the
BBO algorithm. Habitats enhance the exchange and sharing of information between
species and enhance species diversity through migration and mutation. The BBO
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algorithm has simple and effective features of evolutionary algorithms, and it has
similar characteristics of other evolutionary algorithms:

1. The habitat suitability index (HSI) represents the value of the fitness function
of the optimization problem and is a criterion for evaluating the quality of the
solution.

2. The habitat represents the candidate solution, and the appropriate exponential
variable AIV represents the solution feature.

3. The habitat migration and removal mechanism provide an understanding of the
centralized information exchange mechanism.

The high HSI solution shares information to the low HSI solution at a certain
eviction rate. In a single habitat species migration model, the population size of the
habitat is directly proportional to the migration ratio. Set λ(s), u(s) as the population
migration and immigration rate, respectively. When the population number is 0, the
populationmigration rate is 0 and the population immigration rate is the largest; when
the population size is Smax, the population immigration rate is 0 and the population
migration rate is the largest. When the populations of λ(s) and u(s) are equal, the
migration rate and the immigration rate are equal, and the dynamic equilibrium state
is reached. The immigration rate and the migration rate are obtained as follows

{
λ(s) = I (1 − S/Smax)

u(s) = ES/Smax
(1)

4. Habitats will perform mutation operations according to the number of species;
this can improve population diversity and make the algorithm more adaptive.

The mutation operation simulates the habitat ecological environment mutation,
changes the number of habitat species, provides species diversity for the habitat, and
provides more search targets for the algorithm. The probability of habitat mutation
is inversely proportional to the probability of its species number, which is

ms = mmax

(
1 − PS

Pmax

)
(2)

where mmax is the maximum mutation rate; PS is the probability that the number of
species in the habitat is s; Pmax is the maximum value of PS;and ms is the mutation
probability that the number of species in the habitat is s.

3.1.2 Invasive Weed Optimization Algorithm

The invasive weed optimization algorithm (IWO) is a new intelligent optimization
algorithm proposed by A. R.Mehrabian in 2006. The IWO algorithm is derived from
the principles of weed evolution in nature and simulates the entire weed invasion
process [7]. In the whole process of survival and reproduction of the population,
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individuals who have always followed the adaptability can gain more chances of
survival, that is, the most basic principle of survival of the fittest.

Theweed invasion process needs to be realized through four processes: seed space
diffusion, growth, reproduction, and competitive extinction. At the same time, this
process is also the basic step of IWO algorithm optimization:

1. Population initialization

The main initialization parameters are initial weed number G_SIZE, population
maximum size P_SIZE, maximum iteration number itermax, problem dimension
D, maximum and minimum seed generation number seedmax and seedmin, non-
linear index n, step initial value σinit, and final value σfinal. G_SIZE initial weeds{
x1, x2, . . . , xi , . . . , xG_SI Z E

}
are randomly generated.

2. Population reproduction

In the IWO algorithm, fitness is the measure of individual environmental adapt-
ability and individual reproductive ability. The IWO algorithm calculates the number
of breeding seeds according to the individual fitness value. The number of seeds pro-
duced by a weed has a linear relationship with the weed fitness value. The calculation
method is as follows

num = ceil

((
seedmax − seedmin

) · f − fmin
fmax − fmin

+ seedmin

)
(3)

where num is the number of seeds produced by weed individuals, seedmax and
seedmin are the maximum and minimum number of seeds, f is the fitness of weeds,
fmax and fmin are the maximum and minimum fitness values of the population,
and ceil(·) is the upward rounding function. From Eq. (3.3), it can be seen that the
greater the fitness value, the greater the number of seeds produced by weeds, that is,
the weed reproduction ability increases with increases in fitness value.

3. Spatial diffusion.

In the IWO algorithm, weeds produce seeds with 0 as the mean value. σiter is a
normal distribution of standard deviations distributed around weeds

σiter = (itermax − iter)n

(itermax)n
· (σinit · σfinal) + σfinal (4)

whereσiter is the standard deviation, itermax and iter are themaximumand the current
iteration algebra, σinit and σfinal are the standard deviation initial value and the final
value, and n is the nonlinear index. From Eq. (3.4), it can be seen that the dynamic
change characteristic of the current standard deviation is that the search step length
is farther away from the parent individual, so that the individuals with better fitness
are gathered and the individuals with poor fitness value are eliminated.



com.ca@frederick.ac.cy

30 Y.-X. Zhao and R.-X. Hao

4. Competitive selection.

The population size of weeds increased rapidly after several generations. When
the population size is larger than the largest population size P_SIZE, the weeds and
seeds are arranged according to their fitness values from largest to smallest. The top
P_SIZE of the weeds and seeds with better fitness are selected as the next generation
weeds, and the others are eliminated, which is in line with the natural pattern of
survival of the fittest.

3.2 Swarm Intelligence Algorithm

Swarm intelligence (SI) is a general term for collective intelligence behavior in a class
of decentralized self-organizing systems. It was proposed by Gerardo Beni in the
molecular robot system in 1989. The SI system can be regarded as a group of simple
individuals. There are interactions between one individual and the other, between the
individual and its environment, and ultimately, intelligent behavior is characterized
[8]. Although each individual follows extremely simple rules and the entire group
has no central control, ultimately the interaction between local individuals leads to
a global level of intelligent emergence.

The group intelligence algorithm has the following characteristics: the individual
cooperatives in the group are distributed; there is no central control, and it is robust;
it can cooperate through inter-individual communication and has scalability; and the
individual ability is simple and convenient to implement. In addition to solving opti-
mization problems, group intelligence algorithms can also be used in areas such as
control and prediction [9, 10]. This section only discusses group intelligence opti-
mization algorithms, including ant colony optimization, particle swarmoptimization,
artificial bee colony, fireflies, and bat algorithms.

3.2.1 Particle Swarm Algorithm

Particle swarm optimization (PSO) is a group intelligence algorithm proposed by
Kennedy in 1995 based on the study of bird group behavior. The idea is derived from
artificial life and evolutionary computation theory, which mimics the bird’s flight
foraging behavior. The group is optimized through bird group collaboration [11].

PSO is a branch of evolutionary computing and is an iterative-based optimization
tool. The principle and mechanism of PSO are simple. It only evolves to the global
optimal solution by updating the speed and position [12]. No gradient information is
needed, the adjustable parameters are few, the algorithm is easy to implement, and
the operation efficiency is high. Each optimization problem in PSO is treated as a
particle in the search space. All particles have an adaptation value determined by the
optimization function and have a velocity to determine the direction and velocity of
the motion. The particles follow the current optimal particle search in the solution
space [13]. The algorithm first initializes a bunch of random particles and then finds
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the optimal solution through iteration. In each iteration, the particle updates its speed
and position by tracking individual and global extrema. In the D-dimensional target
search space, in particle swarm with the population ofm, wherein the position of the
ith particle in the dth dimension is xid , the flying speed is vid , the optimal position
currently searched for the particle is pid(pBest), and the current optimal position of
the entire particle swarm is pgd(gBest). The speed and position update equation is
as follows

vid+1 = vid + c1 × rand() × (pid − xid) + c2 × rand() × (pgd − xid) (5)

xid+1 = xid + xid (6)

where rand() is a random number in the set [0,1], and c1, c2 are acceleration factors.
The PSO algorithm framework is described below. Figure 1 shows the algorithm

flow of the PSO.

Fig. 1 Process of PSO
algorithm Start

Initialize the particle swarm

Calculate the fitness value of 
each particle's new position

Updating individual extremum 
and global extremum based on 

particle fitness values

Update particle velocity and 
position according to equations 

(1) and (2)

Whether the termination 
condition is met

Output optimal solution

Finish

Y
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1. Initialize all individuals (particles), initialize their speed and position, and set the
individual’s historical optimality to the current position, while the best individual
in the group is current.

2. In contemporary evolution, calculate the fitness function values of individual
particles.

3. If the current fitness function value of the particle is better than the historical
optimum, replace the historical optimum with the current position.

4. If the historical optimum of the particle is better than the global optimum, then
the global optimum will be replaced by the historical optimum of the particle.

5. Update the speed and position for each particle according to Eqs. (5) and (6).
6. The evolution algebra is incremented by 1. If it has not reached the end condition,

turn to the step of (2), otherwise output the optimal solution and then end the
algorithm.

3.2.2 Ant Colony Algorithm

The ant colony algorithm is a population-based heuristic bionic evolution algorithm
proposed by the Italian scholar Colorni in the early 1990s by simulating the collective
path-seeking behavior of ants in nature. It adopts a distributed parallel computer
system, which is easy to combine with other methods and has strong robustness.
However, the long search time and being easy to fall into the local optimal solutions
are its shortcomings [14].

The ant colony algorithmconsists of twobasic phases: the adaptation phase and the
collaboration phase. In the adaptation phase, each candidate solution continuously
adjusts its structure according to the accumulated information; in the cooperation
phase, the better performance solutions can be generated through the information
exchange of the candidate solutions, which is similar to the learning mechanism
of learning automata. In order to understand the basic principles of the ant colony
algorithm more clearly, the classic symmetric traveling salesperson problem (TSP)
is explained:

If C = {
c1, c2, . . . , cn

}
is an n-city collection, L = {

li j ci , c j ⊂ C
}
is the two-

two collection set of elements in set C, di j (i, j = 1, 2, . . . , n) is the Euclidean
distance of li j , and G = (C, L) is a directed graph. The purpose of the TSP problem
is to find the shortest Hamilton circle from the directed graph G.

It is assumed that τi j (t) is the pheromones number on path (i, j) at time t, m is
the number of ants in the ant colony, � = {

τi j (t) ci , c j ⊂ C
}
is the set of residual

pheromones on the li j of the set of elements in the set C at time t. The number of
pheromones on each path is equal at the initial moment. The ant colony algorithm
optimization is implemented on the directed graph g = (C, L , �) by the following
criteria:
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1. Transition probability criteria

During the movement of the ants k(k = 1, 2, . . . ,m), the direction of the transfer
is determined according to the number of pheromones of each path. Artificial ants
in the algorithm have a memory function.

TheTabu table Tabuk = (k = 1, 2, . . . ,m) is used to record the citywhere the ants
k are currently traveling. During the search process, the ant calculates the transition
probability based on the number of pheromones and path heuristic information on
each path. pki j (t) represents the transition probability of ant k moving from element
i to element j at time t, which is

pki j (t) =
{ [τi j (t)]α[ηik (t)]β∑ [τi j (t)]α [ηik (t)]β

0

j ∈ allowedk, s ⊂ allowedk
else

(7)

where allowedk = {C − Tabuk} indicates that the ant k next allows the city to be
selected, α indicates the relative importance of the trajectory, and β indicates the
relative importance of visibility. ηi j (t) is a heuristic function, which is defined as

ηi j (t) = 1/di j (8)

These heuristic functions represent the degree towhich an antmoves from element
to an element.

2. Local adjustment criteria

Local adjustment is performed by each ant during the establishment of a solution.
After h units of time, the number of local pheromones between the two element states
is adjusted according to the following equation

τi j (t + h) = (1 − ζ )τi j (t) + ζ τ0 (9)

τ0 = 1/(nlmin) (10)

where ζ ⊂ [0, 1], lmin represents the distance between the two nearest elements in
the set C.

3. Global adjustment guidelines.

Ants that have generated a global optimal solution have an opportunity to make
global adjustments. The global adjustment rule is

τi j (t + n) = (1 − ρ)τi j (t) + ρ�τi j (t) (11)

�τi j (t) =
m∑

k=1

�τ k
i j (t) (12)
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where ρ is the volatilization coefficient, ρ ⊂ [0, 1],�τi j (t) is the increment of the
number of pheromones on the path ij in this cycle; and �τ k

i j (t) is the amount of
information left by the kth ant in the path ij in this cycle.

3.2.3 Firefly Algorithm

The firefly algorithm is a simulation of the biological characteristics of natural firefly
luminescence and is a stochastic optimization algorithm based on group search.
The algorithm proposed by Cambridge scholar Xin-She Yang is called the firefly
algorithm (FA).

The bionic principle of FA is to simulate the firefly individual in the natural world
by using the points in the search space and to simulate the search and optimization
process into the individual attraction and movement process of the firefly, and to
measure the problem function of the problem into the individual’s position and the
superiority and inferiority of the individual. Process analogy is an iterative process
that replaces poorly feasible solutions with good feasible solutions in the search and
optimization process [15].

The FA contains two elements of brightness and attractiveness. The brightness
reflects the position of the firefly and determines its moving direction. The degree of
attraction determines the moving distance of the firefly, and the target is optimized
through continuous updating of brightness and attractiveness [16]. From a mathe-
matical point of view, the firefly algorithm optimization mechanism is described as
follows:

The relative fluorescence of fireflies is

I = I0 × e−γ ri j (13)

where I0 is the maximum fluorescence brightness of fireflies, that is, the fluorescence
intensity at r = 0, which is proportional to the objective function value; γ is the
light intensity absorption coefficient; and ri j is the spatial distance between fireflies
i and j.

The firefly attraction is

β = β0 × e−γ r2i j (14)

where β0 is the maximum attraction, that is, the attraction rate at r = 0; γ is the light
absorption coefficient, and ri j is the distance between fireflies i and j.

The location update of the fireflies that are attracted to the fireflies is determined
by

xi = xi + β × (x j − xi ) + α × (rand − 1/2) (15)
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where xi and x j are the spatial positions of fireflies i and j; α is the step factor, which
is a constant on [0, 1]; and rand is a uniformly distributed random factor at [0, 1].

The FA optimization process randomly distributes the firefly population in the
solution space. Each firefly emits different fluorescence brightness depending on the
location. By comparison, it can be seen that the high brightness fireflies can attract
low brightness fireflies to move to themselves. The moving distance depends mainly
on the degree of attraction. In order to increase the search area and avoid prematurely
falling into local optimum, a disturbance item α × (rand− 1/2) is added during the
location update process to calculate the updated position according to Eq. (15) [17,
18]. After multiple moves, all individuals would gather at the highest brightness
fireflies’ position to achieve optimization.

3.2.4 Artificial Bee Colony Algorithm

The artificial bee colony (ABC) was proposed by the Turkish scholar Karaboga in
2005. The basic idea inspires the bee colony to collaborate to complete the task of
collecting honey through the individual division of labor and information exchange.
Although a single bee has limited capacity, the entire bee colony can easily find
high-quality honey sources without a unified command.

Compared with the classical method, the ABC algorithm has almost no require-
ments for the objective function and the constraint. In the search process, external
information is not used and the fitness function is used as an evolutionary basis.
The artificial intelligence technology characterized by “generation + test” is formed
[19]. The ABC algorithm has the characteristics of simple operation, fewer control
parameters, high search accuracy, and strong robustness.

When the ABC algorithm solves the optimization problem, the honey source
position is abstracted as the solution space point, representing the potential solution
of the problem, the honey source quality corresponds to the fitness value of the
solution, and NP is the number of honey sources. The ABC algorithm divides the
bee colony into three types: leading bees, following bees, and scout bees. The leading
bees and follow bees each account for half of the bee colony, the number is equal to
the number of honey sources, and each honey source has only one leading bee at the
same time.

Let solve the problem dimension as D. The honey source position is represented
as Xt

i = [Xt
i1, X

t
i2, . . . , X

t
i D], where t indicates the current number of iterations. In

xid ∈ (Ld ,Ud), Ld and Ud represent the lower and upper limits of the search space,
and d = 1, 2, . . . , D. The initial position of the honey source i is randomly generated
in the search space according to Eq. (16)

xid = Ld + rand(0, 1)(Ud − Ld) (16)

At the beginning of the search, the leading bee searches and generates a new
honey source around the honey source i according to Eq. (17)



com.ca@frederick.ac.cy

36 Y.-X. Zhao and R.-X. Hao

vid = xid + ϕ(xid − x jd) (17)

where d is a random number in the set [1, D], and it indicates that the leading bee
randomly selects a one-dimensional search; j ∈ {1, 2, . . . , N P}, j �= i indicates
that randomly selecting one of the honey sources does not equal i; ϕ is an uniformly
distributed random number in the set [–1,1], determining the magnitude of the distur-
bance.When the new honey source Vi = [vi1, vi2, . . . , vid ] has better fitness than Xi ,
Vi is used to replace Xi by the greedy choice method, otherwise Xi is reserved. After
all the bees have completed the operation Eq. (17), they fly back to the information
exchange area to share the honey source information. The following bee share infor-
mation according to the leading bee, and Eq. (18) is used to calculate the probability
to follow

pi = fiti/
NP∑
i=1

fiti (18)

The following bee produces a uniformly distributed random number r at [0, 1]. If
pi is bigger than r, then the following bee generates a new honey source around the
honey source i according to Eq. (17), and then the same greedy selection method as
the leading bee is used to determine the retained honey source.

During the search, if the honey source Xi reaches the threshold limit after trial
search iterations and does not find a better honey source, this honey source Xi will
be given up. Correspondingly, this leading bee character is turned into the scout bee.
The scout bee will randomly generate a new honey source in the search space to
replace Xi , and the above process is expressed as Eq. (19)

Xt+1
i =

{
Ld + rand(0, 1)(Ud − Ld), triali ≥ limit

Xt
i , triali < limit

(19)

For the sake of generality, to minimize the optimization problem in the ABC
algorithm, the solution fitness evaluation is calculated according to Eq. (20)

fiti =
{
1/(1 + fi )
1 + abs( fi )

fi ≥ 0
fi < 0

(20)

where fi is the function value representing the solution.

3.2.5 Bat Algorithm

By simulating the biological characteristics of bats using ultrasonic search and prey
on prey, Xin-She Yang proposed a bat algorithm based on stochastic optimization.
The algorithmhas the characteristics of a simplemodel, fast convergence, and parallel
processing [20].
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The accurate positioning and predation of bats in complex environments are
inspired by the optimization of its biological mechanism. The bat algorithm is based
on the algorithm of population evolution. Firstly, the population is randomly initial-
ized in the feasible solution space, that is, the initial position and velocity of the
individual are determined. The optimal position of the group is found by evaluating
the group. Then, the individual flight speed and position are updated according to
Eqs. (21) and (22)

vt
i = vt−1

i + (
xti − x∗) · fi (21)

x ′
i = xt−1

i + xti (22)

where vt−1
i and vt

i indicate the flying speed of bat i at the moment of t − 1 and t; xti
indicates the spatial position of bat i at t time; x∗ indicates the position of the best
bat in the current group; fi is the pulse frequency used for bat i to search for prey;
and fi ∈ [

fmin, fmax
]
is the search pulse frequency range for bat i.

It can be seen from the biological mechanism that in the process of searching for
prey, the pulsing ultrasonic pulse sound in the initial stage of the bat is a powerful
and low frequency, which helps to search a wider space. After the prey is found, the
pulse intensity is gradually reduced and the number of pulse emission is increased.
In order to grasp the spatial position of the prey accurately, Eqs. (23) and (24) are
used to simulate the search characteristics

r t+1
i = r0i [1 − exp(−γ × t)] (23)

At+1
i = α × At

i (24)

where r0i indicates the maximum pulse frequency of bat i; r t+1
i indicates the bat i

pulse frequency at time t + 1; γ is a constant greater than zero which indicates the
pulse frequency increase factor; At

i indicates the intensity of the bat i firing a pulse at
time t; and α is the pulse intensity attenuation coefficient which is usually a constant
selected in the range of [0, 1].

The bat algorithm flowchart is shown in Fig. 2, where R1, R2 are randomly
generated numbers.

3.2.6 Cuckoo Algorithm

In 2009, Xin-She Yang proposed a cuckoo search algorithm based on long-term
research in mathematical modeling and engineering optimization. The algorithm
is proposed based on the long-term study of the habit of the cuckoo (the specific
behavior of the cuckoo lying eggs is observed) and combined with the Lévy flight
of the flying creature. Since this algorithm is easy to understand, easy to perform,
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Fig. 2 Process of bat algorithm

and has a good random search path, it has been successfully applied to some difficult
problems [21].

To understand the cuckoo’s search for nests, the algorithm is described using the
idealized conditions described below:

1. Each female cuckoo produces only one egg at a time. After observing the suitable
bird’s nest, randomly select one of the nests to place your own eggs.

2. After a large number of calculations, the bird eggs (optimal solution) in the best
bird nest after calculation are saved.

3. The number of nests capable of placing cuckoo eggs is a fixed value and is set
according to the algorithm.

Set the probability that the nest bird will find the foreign bird. If the main bird of
the nest discovers the foreign bird’s egg, the nest bird has two treatment methods:
Discard the eggs of the foreign bird; discard the current bird’s nest, and build a nest in
the new position. Treating the bird eggs in each nest as a solution, each cuckoo bird
egg represents a new solution, by replacing the bad bird eggswith good bird eggs, and
thus obtaining a global optimal solution. Through the above ideal state assumption,
the equation of cuckoo searching position and path is updated as follows

x (t+1)
i = x (t)

i + α ⊕ L(λ) i = 1, 2, . . . , n (25)

where x (t)
i is the position of the ith bird’s nest in the tth generation, ⊕ is point-

to-point multiplication, the step size factor is represented by α, L(λ) is the Lévy
random search path, L ∼ u = t−λ, (1 < λ � 3). After the position update, the
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random number r ∈ (0, 1) is compared with pa . Therefore, if r > pa , the bird’s
nest position x (t+1)

i is randomly changed; if r < pa , the bird’s nest position remains
unchanged. After the location is updated, the bird’s nest position with a good test
value is kept.

3.3 Evolutionary Algorithm

The evolutionary algorithm is an “algorithm cluster.” Although it has many changes,
including different genetic expression patterns, different crossovers, mutation opera-
tors, and different regeneration and selection methods. Its inspiration comes from the
evolution of natural organisms. Compared with traditional optimization algorithms,
evolutionary computation is a mature global optimization method with high robust-
ness and wide applicability. It has self-organizing, self-adaptive, and self-learning
properties. This algorithm can effectively deal with the complex problems that tra-
ditional optimization algorithms are difficult to solve without being limited by the
nature of the problem.

3.3.1 Genetic Algorithm

In 1975, ProfessorHolland of theUSAfirst proposed the genetic algorithm in “Adapt-
ability of Nature and Artificial Systems,” which was derived fromDarwin’s theory of
evolution, Weizmann’s species selection theory, and Mendelian population genetics.
It is a random search algorithm that draws on the natural selection and natural genetic
mechanisms of the biological world.

The genetic algorithm is an adaptive and global probabilistic search algorithm
that simulates the genetic and evolutionary process of the survival of the fittest in
the natural environment. It starts with a population that represents a potential set
of problems. First, the phenotype is mapped to the genotype, i.e., the code, so that
the solution space is mapped to the coding space. Each code corresponds to a solu-
tion, called a chromosome or an individual. After the initial population is produced,
according to the principle of survival of the fittest, the better and better approximate
solution is generated by the evolution of the generations. Each generation selects
individuals according to the degree of individual fitness in the problem domain and
uses natural genetic operators to combine and mutate, producing a population repre-
senting the new solution set [22]. This process is similar to natural evolution, making
the offspring population more adaptable to the environment than the previous gen-
eration. The best individual in the last generation’s population can be decoded as the
approximate optimal solution. The steps to solve a problem using a genetic algorithm
are as follows:
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1. Establish a mathematical model.
2. Coding, which uses a well-designed algorithm to map phenotypes to individual

genotypes.
3. Decoding, the genetic operator only works on the encoded chromosome, and the

objective function value is calculated by the individual phenotype to determine
the pros and cons of the chromosome.

4. Determine the fitness conversion rules, the values of the solution space cor-
responding to the chromosomes may vary greatly, and a certain conversion
is needed to make it suitable for a quantitative evaluation of the individual’s
advantages and disadvantages.

5. Estimate genetic operators, i.e., design crossovers, mutations, and selection oper-
ators. The genetic operator has a great relationship with the problem to be
optimized and the coding scheme of the chromosome.

6. Determine the operating parameters, including the crossover probability, the
probability of variation, and the number of populations.

The process for solving the problem using the genetic algorithm is shown in Fig. 3.
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optimization model

Individual phenotype

coding decoding

Individual gene X

Objective function f(X)

Determining fitness 
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adaptabilityF(X)

Design genetic operator

Determine operating 
parameters

Genetic algorithm

Fig. 3 Process of genetic algorithm
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3.3.2 Differential Evolution Algorithm

Differential evolution (DE) is a heuristic random search algorithm based on group
difference, which was proposed by R. Storn and K. Price for solving Chebyshev
polynomials [23]. Due to its simple principle, few controlled parameters, and strong
robustness, the differential evolution algorithmhas attractedmore andmore scholars’
attention. In recent years, DE has been widely used in constrained optimization
calculations, cluster optimization calculations, nonlinear optimization control, and
neural network optimization.

DE uses real-number coding, and its algorithm principle is similar to the genetic
algorithm. The evolution process is the same as the genetic algorithm: mutation,
crossover, and selection. The selection strategy in the DE algorithm is usually the
tournament selection, and the crossover operation is similar to the genetic algorithm.
However, the differential strategy is used in the mutation operation, that is, the indi-
vidual is perturbed by the difference vector between the individuals in the population
to realize the individual variation. The DE mutation method effectively utilizes the
population distribution characteristics, improves the search ability of the algorithm,
and avoids the deficiency of the variation method in the genetic algorithm.

For optimization problems

min f (x1, x2, . . . , xD) s.t x L
j � x j � xUj , j = 1, 2, . . . , D (26)

where D is the dimension of the solution space, and the x L
j and xUj pairs represent

the upper and lower bounds of the range of values of the jth component x j . The DE
algorithm flow is shown as follows:

1. Initialize the population

To initialize the population, the initial population is randomly generated by

x j,i (0) = x L
j,i + rand(0, 1) · (

xUj,i − x L
j,t

)
(27)

where xi (0) represents the ith “chromosome” (or individual) of the 0th generation
in the population, and x j,i (0) represents the jth “gene” of the ith “chromosome” of
the 0th generation. NP represents the population size, and rand(0, 1) represents a
random number uniformly distributed in the interval of (0, 1).

2. Variation operation

DE implements individual variation through a differential strategy, which is also
an important indicator which is different from the genetic algorithms. In DE, the
two different individuals in the population are selected in the common differential
strategy. Then, the vector difference is scaled and performed the vector synthesis
with the individual to be mutated.

νi (g + 1) = xn1(g) + F · (x2(g) − xt3(g)) i �= r1 �= r2 �= r3 (28)
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where F is the scaling factor, and xi (g) is the ith individual in the gth generation
population. In the process of evolution, in order to ensure the validity of the solution,
it is necessary to judge whether each “gene” in the “chromosome” satisfies the
boundary condition or not. If the boundary condition is not satisfied, the “gene”
is regenerated by a random method (the same as the initial population generation
method).

After the mutation of the gth generation population{
xi (g)|x L

j,i � x j,i (g) � xUj,i , i = 1, 2, . . . , N P; j = 1, 2, . . . , D
}
, an interme-

diate
{
vi (g + 1)|vL

j,i � v j,i (g + 1) � vUj,i , i = 1, 2, . . . , N P; j = 1, 2, . . . , D
}
is

produced.

3. Cross-operation

The inter-individual crossovers are carried out among the gth generation popula-
tion g{xi (g)} and the variant intermediate {vi (g + 1)}.

u j,i (g + 1) =
{

v j,i (g + 1) if rand(0, 1) � CR or j = jrand
x j,i (g) otherwise

(29)

where CR is the crossover probability, and jrand is a random integer of [1 , 2, . . . , D].
Figure 4 is a schematic diagram of the crossover of six gene positions “chro-

mosomes.” In order to ensure that at least one “gene” of each “chromosome” of
the variant intermediate {vi (g + 1)} is passed on to the next generation, the first
cross-operated gene is randomly taken out of the j thrand “gene” in vi (g + 1) as the
jrand − position “gene” of “chromosome” ui (g + 1). Subsequent cross-operations
are performed by crossover probability CR to select alleles of xi (g) or vi (g + 1) as
the alleles.

4. Select the operation

The greedy algorithm is used in DE to select individuals who enter the next
generation of the population

xi (g + 1) =
{
ui (g + 1) if f (ui (g + 1)) � f (xi (g))
xi (g) otherwise

(30)
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3.3.3 Harmony Search Algorithm

The harmony search (HS) algorithm is an intelligent optimization algorithm pro-
posed by Korean scholar Geem in 2001. The algorithm simulates music creation
in which musicians rely on their own memories to achieve a wonderful harmony
state by repeatedly adjusting the pitch of each instrument in the band. The harmony
search algorithm compares the harmony of the instrument tones with the solution
vector of the optimization problem, and the evaluation is the value of each corre-
sponding objective function. The algorithm introduces twomain parameters, namely
the memory value probability HMCR and fine-tuning probability PAR [24]. Related
research shows that the harmony search algorithm demonstrates better optimization
performance than genetic algorithms and simulated annealing algorithms in solving
multi-dimensional function optimization problems.

The harmony search algorithm first generates HMS initial solutions and places
them into the harmonymemoryHM. Then, the specific steps of the harmonymemory
randomly searching for a new solution are: (1) a random number of rand in 0–1 is
randomly generated; (2) if rand < HMCR, the new solution is obtained through
randomly searching inHM; and (3) otherwise, the new solution is searchedwithin the
possible range of variables outside of the harmony memory. The new solution taken
from HM is then locally perturbed by the fine-tuning probability of PAR. Finally, it
is judged whether the value of the new solution objective function is better than the
worst solution in HM or not. If it is, the harmony library is updated and iterated until
the predetermined number of iterations Tmax is reached. The calculation steps for
harmony search are shown as follows.

1. Defining problems and parameter values

Suppose the problem is minimized and its form is as follows

min f (x) s.t. xi ∈ Xi , i = 1, 2, . . . , N (31)

where f (x) is the objective function, x is the solution vector formed by the deci-
sion variable xi (i = 1, 2, . . . , N ), and the value range of each decision is Xi .
For the discrete variable Xi = (xi (1), xi (2), . . . , xi (K )), the continuous variable
Xi : x L

i ≤ Xi ≤ xUi , N is the number of decision variables, and K is the number
of possible values of the discrete variable. The algorithm parameters obtain the size
of the harmony memory HMS, the probability of the acoustic memory HMCR, the
pitch fine-tuning probability PAR, the pitch trimming bandwidth bw, and the number
of creations Tmax.

2. Initialization and sound memory

There are HMS harmony x1, x2, . . . , xHMS randomly generated and being placed
into the harmony memory. The form of the harmony memory is described as follows
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HM =

⎡
⎢⎢⎢⎣

x1

x2

...

xHMS

∣∣∣∣∣∣∣∣∣

f (x1)
f (x2)

...

f (xHMS)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x11 x12 · · · x1N
x21 x22 · · · x2N
...

...
. . .

...

xHMS
1 xHMS

2 · · · xHMS
N

∣∣∣∣∣∣∣∣∣

f (x1)
f (x2)

...

f (xHMS)

⎤
⎥⎥⎥⎦ (32)

3. Generate new harmony

To generate a new harmony x ′
i = (

x ′
1, x

′
2, . . . , x

′
N

)
, each tone of the new harmony

x ′
i (i = 1, 2, . . . , N ) is generated by a learning harmony memory, pitch tuning, and
a randomly selected pitch mechanism.

4. Update the harmony memory

The new solution in step (3) is evaluated. If it is better than the one with the worst
function value in HM, the new solution is updated to HM. The specific operations
are as follows

f (x) < f
(
xworst

) = max
j=1,2,...,MHS

f (x j ), then xworst = x ′ (33)

5. Check if the algorithm termination condition is reached

Repeat steps (3) and (4) until the number of iterations Tmax is reached. The
flowchart of the harmony search algorithm is shown in Fig. 5.

3.4 Artificial Intelligence Algorithm

Artificial intelligence (AI) is not a new term. It has been more than 60 years since
the birth of the Dartmouth Conference in 1956. Recently, artificial intelligence has
ushered in the third development climax with the breakthrough of the computer, and
the rise of big data, cloud computing, and deep learning. Artificial intelligence is an
algorithm that uses computers to simulate certain thinking processes and intelligent
behaviors of humans [25]. It mainly includes the principle of computer-implemented
intelligence and the manufacture of computers similar to human brain intelligence,
enabling computers to achieve higher-level applications. Because artificial intel-
ligence algorithms have excellent learning abilities and strong robustness, it has
become a hotspot in the field of path planning.

3.4.1 Artificial Neural Network Algorithm

The artificial neural network algorithm is a very good algorithm in the field of artifi-
cial intelligence. It mainly simulates animal neural network behavior and performs
distributed parallel information processing. However, its application in path planning
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is not successful because the complex and variable environment in path planning is
difficult to describe with mathematical equations. If a neural network is used to pre-
dict points outside the distribution space of the learning samples, the effect will be
rather small. Although neural networks have excellent learning ability, poor general-
ization is a fatal flaw. However, because of its strong learning ability and robustness,
its combination with other algorithms has become a hot topic in the field of path
planning.

In the twentieth century,Hopfield successfully applied artificial neural networks to
combinatorial optimization problems. The multi-layer feedback learning algorithm
constructed by McClelland and Rumelhart successfully solved the “exclusive OR
problem”of single hidden layer cognitive networks and other identification problems.
The principle of artificial neural network algorithm is as follows.

The collision penalty function of a path is defined as the sum of the collision
penalty functions of each path point, and the collision penalty function of one point
is obtained through its neural network representation of each obstacle. The obstacle
is assumed to be a polygon [25].
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Figure 6 shows a neural network of a penalty function from point to obstacle. The
two nodes of the bottom layer represent the coordinates x, y of a given path point.
Each node of the middle layer corresponds to the inequality constraint of one side of
the obstacle. The connection weight coefficient of the bottom layer and the middle
layer is equal to the coefficient before x, y in the inequality. The threshold of each
node in the middle layer is equal to the constant term in the corresponding inequality.

The operational relationship of the continuous network is as follows

C = f (Io) (34)

Io =
M∑

m=1

OHm + θT (35)

OHm = f (IHm) (36)

IHm = wxmxi + wym yi + θHm (37)

where C is the top node output; IO is the top node input; θT is the top node threshold;
OHm is the mth node output of the middle layer; IHm is the mth node input of the
middle layer; θHm is the mth of the middle layer node threshold; and wxm, wym

are the mth inequality constraint condition coefficients. The excitation function is a
commonly used sigmoid function

f (x) = 1

1 + e−x/T
(38)

where T is the “temperature” in the simulated annealing method, and it changes
according to the following rules

T (t) = U0

log(1 + t)
(39)

The energy of the entire path corresponding to the part of the collision function
is as follows
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EC =
N∑
i=1

K∑
k=1

Ck
i (40)

where K is the number of obstacles, N is the number of path points, and Ck
i is the

collision function of the ith path point P(xi , yi ) to the kth obstacle.
The energy corresponding to the length of the path is defined as the sum of the

squares of the lengths of all the segments. That is, all path points P(xi , yi ), i =
1, 2, . . . , N is defined as follows

E1 =
N−1∑
i=1

[
(xit , 1 − xi )

2 + (yit ,−yi )
2
]

(41)

The total energy function for the entire path is defined as

E = wl El + wcEc (42)

where wc and wl represent the weighting of each part.
Since the entire energy is a function of each path point, bymoving each path point,

it moves in the direction of energy reduction, and finally, the total energy minimum
path can be obtained. The dynamic motion equation of the point P(xi , yi ) is

ẋi = −Z

[
2wl(2xi − xi−1 − xi+1) + wC

K∑
k=1

f ′
(

(IO)ki

M∑
m=1

f ′((IHm)ki
)
wk

xm

)]

ẏi = −Z

[
2wl(2yi − yi−1 − yi+1) + wC

K∑
k=1

f ′
(

(IO)ki

M∑
m=1

f ′((IHm)ki
)
wk

ym

)]

(43)

where

f ′(·) = 1

T
f (·)(1 − (·)) (44)

3.4.2 Deep Learning Algorithm

In 2006, Hinton et al. proposed a deep self-encoding and self-decoding network,
which solved the problem of deep neural network training and completely pushed
the neural network into the era of deep learning.

Advances in deep learning have made it possible to perform path planning on the
original image, enabling end-to-endmodelswith learning generalization capabilities.
At present, research on the path planning problemwith deep learning is in its infancy,
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and it is necessary to model the path planning problem with the reinforcement learn-
ing idea. In the framework of reinforcement learning theory, path planning can be
regarded as a continuous control problem consisting of a series of single-step deci-
sions. The method of using deep learning to represent decision-related functions is
the deep-enhanced learning [26]. Themainstreammodel for path planning is a neural
network based on a reflective strategy that lacks the ability to deal with long-term
planning problems. Moreover, the agency experience needed to enhance learning is
sometimes difficult to obtain and requires much time and money. Therefore, at the
theoretical and practical application level, the demand for intelligent algorithms with
end-to-end learning and planning capabilities is imminent, and its implementation
and improvement still face difficulties.

Although the history of deep learning and deep-enhanced learning-related
research is rather short, its use in path planning is numerous.According to the research
progress, related research can be divided into two levels.

1. The path planning algorithms based on deep learning

Representative research has applications in motion planning for planar robots.
The essence of this method is to use the deep neural network to parse the original
input data tensor, get a set of representations, and then combine the A∗ algorithm to
plan. The advantage of this method is that reliable data can be obtained without the
loss of data representation of the original data processing. The disadvantage is that
the ability to generalize the environment is weak.

2. The path planning algorithms based on deep-enhanced learning

The features of the depth-enhanced learning path algorithm are that it only needs
to specify the planning target, such as no collision, reaching the destination, and short
path, and it iteratively updates the neural network through environmental training
or simulation experiments. The neural network used for deep-enhanced learning
can judge the current input and output the decision for path planning. The working
principle is a neural network-based conditional reflection strategy. Depending on
the fitting ability of the neural network, sample training, through a large number of
scenes, makes the neural network react in similar scenarios to achieve the purpose
of path planning. If the training sample is insufficient, or the number of iterations is
insufficient, the model could be unstable and lack generalization ability.

Deep-enhanced learning is the algorithm closest to human thinking action patterns
in path planning algorithms, and it is an important attempt to implement general
artificial intelligence.

Deep-enhanced learning integrates both perception and decisionmaking. The core
idea of depth-enhanced learning based on the value function is to use the deep neural
network to approximate the value function in learning and thenmake decisions based
on the value of the value function. The optimal representative integration is a deep
Q network.

The core idea of the deep Q network is to approximate the optimal action-value
function with the neural network and obtain the neural model parameters through the
Q learning algorithm, so as to obtain the optimal strategy corresponding to the state
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and action [23]. Here, the Q(s, a) function is used to represent the evaluation func-
tion. The Q learning algorithm in the traditional reinforcement learning is repeated
using the following equation

Q(s, a) = Q(s, a) + α
(
Rt+1 + γ maxa′ Q

(
s ′, a′) − Q(s, a)

)
(45)

where s, a are the current actual state and the current actual action, s ′, a′ are the
successor state and subsequent actions, and α is the update step size.

In the deepQ network, the iterative update is the weight of the neural network, and
the weight of the neural network is differentiable. Here, only the objective function
needs to be defined, and the derivative of the neural network weight is obtained.
The model parameters are updated according to the update algorithm of the neural
network until convergence. The neural network weight is recorded as θ , and the
training data set is the agent experience D. The mean squared loss function of the
ith iteration can be defined without using other neural network training techniques in
the following form

Li (θi ) = E(s,a,r,s)−U (D)

(
Rt+1 + γ maxa′ Q

(
s ′, a′; θi

) − Q(s, a; θi )
)2

(46)

According to the equation, the training of the model can be realized by calculat-
ing the derivative about θ of the loss function using back propagation through the
computational graph of the neural network and updating the model parameters by
the derivative.

4 Development Tendency of Navigation Algorithms

Bionicswas founded in themiddle of the last century.Many scientists seek new inspi-
ration for artificial systems from biology. Some scientists independently developed
simulated evolutionary algorithms suitable for the optimization of complex problems
in the real world from the mechanism of biological evolution. The development sta-
tus and tendency of heuristic optimization algorithms applied to navigation problems
are described below.

4.1 Development Status of Navigation Algorithms

After the initial idea of ant colony optimization was put forward by Dorigo et al. in
1991, not much attention was paid to it. It was not until 1996 that the theory and
methods of ant colony optimizationwere systematically elaborated that an upsurge in
research occurred [27]. A large number of improvement and application researches
appeared in this area.
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In 1998, the first ant colony algorithm seminar was held in Brussels, Belgium.
Researchers from all over the world discussed this new optimization method. Dorigo
published a research review in Nature in 2000 that pushed the ant colony algorithm
to the most influential academic journals. In terms of particle swarm optimization,
since Eberhart proposed the particle swarm optimization algorithm, foreign research
has mainly focused on parameter and topology improvements.

The earliest research on the ant colony algorithm in China is a paper published by
Zhang Jihui ofNortheasternUniversity in “Theory and Practice of SystemsEngineer-
ing.” Other related research also includes the adaptive ant colony algorithm proposed
by Wu Qinghong and others of Northeastern University, combining the improved
algorithm of mutation and exchange. Qin Gangli and others of Tsinghua University
proposed an ant colony algorithm to adjust pheromones adaptively. The stochastic
disturbance ant colony algorithm for the TSP is proposed by Hao Jin and others of
Chongqing University. Chen Jun of Yangzhou University proposed an adaptive ant
colony algorithm based on distribution uniformity. Ma Liang of Shanghai Univer-
sity proposed a restricted minimum tree ant algorithm. The ant colony algorithm for
convex integer programming and the ant colony algorithm for continuous function
optimization are proposed by Lin Jin and others of Fuzhou University. Wang Ying
and others proposed an adaptive ant colony algorithm by adaptively changing the
volatilization coefficient in the ant colony algorithm.Wu Bin in the Institute of Com-
puting Technology Chinese Academy of Sciences proposed improved ant colony
algorithms such as the division of labor and cooperation model based on swarm
intelligence and clustering model based on swarm intelligence and their applica-
tions in data mining. Cheng Junsheng of Anhui University proposed to use randomly
connected artificial neural networks to describe the mathematical model of swarm
intelligence. LiYoumei ofXi’an JiaotongUniversity proposed a global hybrid heuris-
tic algorithm by combining the discrete neural network algorithm with ant colony
optimization.

Earlier research on particle swarm optimization in China is a paper published by
Xu Hai of Fudan University in Computer Engineering and Application. He proposed
a self-learning algorithm for a fuzzy logic system based on improved particle swarm
optimization. The computer simulation of fuzzy identifiers proves the effectiveness
of the improved algorithm. Other related researches include Dong Ying of North-
eastern University, who proposed a hybrid particle swarm optimization algorithm
to solve nonlinear programming problems and designed a method to prioritize con-
straint fitness to deal with constraint conditions. The dynamic neighborhood operator
and variable inertiaweight are combined to evolve to obtain a global optimal solution.
Huang Lan and others of Jilin University proposed a special particle swarm optimiza-
tion algorithm by using the concepts of the swap operator and swap sequence. This
algorithm is then applied to solve the traveling quotient problems. Wang Suihua and
others of Henan Normal University proposed a network learning algorithm based
on particle swarm optimization. Lv Zhensu and others of Lanzhou University put
forward an improved algorithm of adaptive mutation particle swarm optimization,
and they made numerical simulation of classical functions. Zhang Libiao and others
of Jilin University proposed to solve multi-objective optimization problems based on
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the particle swarm algorithm. They made corresponding improvements to the selec-
tion methods of global extrema and individual extrema. Liu Jingming and others
from Shanghai Jiaotong University proposed a K-means clustering algorithm based
on particle swarm optimization. Chen Hongzhou of Harbin Engineering University
proposed a particle swarm algorithm with sensory characteristics to enhance the
ability of local search. Peng Yu of Harbin Institute of Technology proposed a hybrid
swarm intelligence optimization method based on the particle swarm algorithm and
simulated annealing algorithm.

4.2 Development Tendency of Navigation Algorithm

With the continuous development of science and technology, the environment faced
by path planning and navigation algorithms is becoming more complex and change-
able. This requires the algorithm to have the ability to quickly respond to complex
environmental changes. The meta-heuristic optimization algorithm, as a hot research
field in intelligent science and computational science, has achieved a large number
of research results in recent years and showed strong attraction and vitality. The
meta-heuristic algorithm and its application research are unfolding. Human’s end-
less exploration of natural systems and their thirst for advanced machine intelligence
would surely promote the vigorous development of this field. Looking at the devel-
opment history and current situation of meta-heuristic algorithms, we can briefly
summarize its main development direction in the future:

1. Algorithm mathematical analysis

Despite the great success of the meta-heuristic algorithm, the mathematical anal-
ysis of the algorithm is still limited because its idea includes complex random behav-
iors, and there is no universal framework. Theoretical analysis on complexity, con-
vergence, and computational capability is still not effectively solved; thus, further
development of the meta-heuristic algorithm is still needed.

2. High-dimensional multi-objective optimization problem

The question of how to effectively solve the high-dimensional, multi-objective
optimization problem is one of the most difficult problems in the optimization field
today. In recent years, researchers have been attempting to solve the multi-objective,
optimization problem by using distributed estimation algorithm, ant colony algo-
rithm, and particle swarm optimization algorithm. However, there are still many
challenges in terms of theory, system, and testability.

3. Hyper-heuristic algorithm

The hyper-heuristic algorithm provides some high-level strategy to obtain a new
heuristic algorithm by operating or managing a set of low-level heuristic algorithms
[28]. Although the hyper-heuristic algorithm has just been proposed, due to its more
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advanced intelligent system characteristics, it could potentially become one of the
mainstream research directions in the field of heuristic optimization in the future.

4. Effective combination of path planning and navigation algorithms

Any single algorithm cannot solve all practical path planning and navigation prob-
lems. Especiallywhen it comes to the new problems of interdisciplinary research, it is
difficult to study new algorithms. Complementary advantages among path planning
algorithms make it possible to solve this problem.

5. The combination of environmental modeling technology and path planning
algorithm

In the face of complex, continuous, dynamic environment information in two-
dimensional or even three-dimensional space, what the algorithm can do is limited.
The combination of excellent modeling technology and the path planning algorithm
could become a new idea to solve this problem.

6. Design of multi-agent parallel path planning algorithm

With the wide application of multi-agent parallel cooperation algorithms, the path
conflict problem of multi-agent collaboration and dual-mechanical arm cooperation
has received increased attention. How to realize its collision-free path planning may
become one of the hottest issues.

5 Application of Navigation Algorithm

Modern society has long been inseparable fromunmanned systems.Unmanned aerial
vehicles, unmanned ground vehicles, unmanned surface boats, unmanned underwater
vehicles, and so on are all over the land, air, and sea. All countries expect to enhance
the synergy of unmanned systems to better serve society. For unmanned systems,
dynamic planning capability based on path planning and dynamic collision avoidance
is an important embodiment of intelligence. Excellent dynamic planning algorithms
can assist unmanned systems to complete theirmissions in the safest andmost optimal
way.

5.1 Application of Aviation Navigation Algorithm

Unmanned aerial vehicles are aerial vehicles which need no pilots and can be con-
trolled autonomously. They can also perform ground and sea combat missions. Typ-
ical unmanned aerial vehicles include cruise missiles and unmanned airships. In the
military field, unmanned aerial vehicles have the unique advantages of low cost,
small size, and strong survivability. Unmanned aerial vehicles play an important role
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in the war due to their high efficiency in detection, surveillance, accurate target cap-
ture, and strong combat capability. In the civil-use field, unmanned aerial vehicles
have broad application prospects [29]. They can be used in many applications such
as environmental monitoring, agricultural production, aerial photography, and aerial
surveying.

The USA has an absolute leading position in unmanned aerial vehicle technology
and its applications. The USA has strong technical strength in cruise missile technol-
ogy and other aspects, and other countries are finding it difficult to catch the USA in
route planning. The representative research results on route planning are used in the
route planning of low observable aircrafts such as the X-47B, Global Hawk, Predator
unmanned aerial vehicles, and missiles launched outside joint air-to-ground defense
zones.

China started the research on path planning technology of unmanned aerial vehi-
cles in the early 1980s. In the 1990s, the research on this technology developed
rapidly. A variety of unmanned aerial vehicles with different performances such as
“Wing Loong UAV” and “CH-4 UAV,” displayed at the Zhuhai Air Show, showed the
world the strength of China’s unmanned aerial vehicle route planning technology.

5.2 Application of Land Navigation Algorithm

Unmanned ground vehicles have broad application prospects in intelligent trans-
portation and assisted driving. In industry, unmanned ground vehicles can be applied
to the automatic guided vehicles in logistics operation departments such as auto-
matic warehouses, ports, docks, and workshops. They can improve cargo handling
efficiency and reduce production costs. At the same time, they can also be used in
environments where human beings cannot work to complete the tasks of cargo han-
dling and equipment detection in harsh and toxic environments. Thus, they can help
avoid the harm caused to human by some harmful substances and environments. In
military affairs, unmanned ground vehicles can automatically drive on the battlefield
according to the designer’s intention. Unmanned ground vehicles can replace humans
to complete patrols, reconnaissance, demining, and sampling of toxic substances.
They can quickly and accurately collect relevant information, thereby improving
the efficiency of military mission execution and effectively avoiding casualties of
military personnel. In the development of intelligent weapon systems, unmanned
ground vehicles can be used as an installation platform, which can automatically
search and attack targets and improve the attack power and safety. In aerospace sci-
ence research, space autonomous mobile vehicles are an important component [30].
Therefore, unmanned ground vehicles can also be used for the exploration of the
outer planets. They could play an important role in promoting the exploration of the
outer planets and the development and utilization of the outer planets.

The US Department of Defense has successively developed a path planning sys-
tem for DEMO-I, DEMO-II, and DEMO-III series of military unmanned ground
vehicles for military applications. The ASV project led by Japan’s Ministry of
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Transport and the SSVS project led by the Ministry of Communications and Indus-
try both include the development of autonomous driving (path planning) systems
for unmanned ground vehicles. The intelligent vehicle research team of the Fed-
eral Defense University of Munich, Germany, in cooperation with Mercedes-Benz,
Germany, is committed to the research of autonomous vehicle navigation system
and has been successfully applied to VaMoRs unmanned ground vehicles. China
National University of Defense Technology has developed a vision-based CITAVT
series unmanned ground vehicle path planning system. Tsinghua University began to
research and develop the autonomous navigation system of THMR series unmanned
ground vehicles with the support of the “863 Program.”

5.3 Application of Sea Surface Navigation Algorithm

With the rapid development of modern science and technology, maritime intelligence
transportation has become an important part of science and technology strategy. The
development of maritime intelligence transportation is mainly to realize the naviga-
tion automation of ships and the intelligentmanagement ofmaritime traffic.However,
the research hotspot, unmanned surface vehicles, which has arisen in recent years,
has attracted a large number of researchers due to its small size, fast speed, intelli-
gence, and high degree of automation. Unmanned surface vehicles can be used not
only in military areas such as mine clearance, reconnaissance, and anti-submarine
warfare, but also in civilian areas such as hydrologic detection, meteorological detec-
tion, environmental monitoring, and maritime search [31]. Path planning, as the core
issue of unmanned craft research, represents the intelligence level of unmanned craft
to a certain extent.

The USA and Israel have always been in the lead in the research and use of
unmanned surface vehicle path planning systems. The Spartan Scout and Ghost
Guard, developed by the USA, have highly intelligent path planning systems, which
can realize autonomous navigation, intelligent obstacle avoidance, and mission exe-
cution of unmanned boats. The Protector, Silver Marlin, and Stingray unmanned
surface vehicle, launched by Israel’sMinistry ofDefense, have the advantages of flex-
ibility and concealment. They are equipped with intelligent cruise and autonomous
collision avoidance path planning systems. Shanghai University and Donghai Navi-
gation Safety Administration jointly developed China’s first unmanned surface vehi-
cle “Jinghai No. 1.” It consists of detecting unmanned offshore platforms and uses
ground control systems to achieve remote control and autonomous navigation, route
planning, route tracking, automatic sea surface and underwater obstacle avoidance
collision avoidance, autonomous long-range navigation, and other functions.
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5.4 Application of Underwater Navigation Algorithm

Unmanned underwater vehicles are underwater vehicles that do not need to be con-
trolled by personnel in the submersible. They are mostly used to perform underwa-
ter operations, long-range transportation, ocean monitoring, intelligence collection,
resource investigation, forecasting and early warning, scientific research, and other
tasks. With the rapid development of computer technology, artificial intelligence
technology, navigation equipment, and command and control hardware, unmanned
underwater vehicles have been greatly developed. As the unmanned underwater vehi-
cle has removed the mooring line, it is more flexible in underwater operations. More
and more attention has been paid to this technology by the military and marine tech-
nology departments of developed countries. In the research of unmanned underwater
vehicles, path planning technology is an important part to perform and complete the
navigation.

The research on the path planning of unmanned underwater vehicles has lasted
more than 20 years.Many coastal countries, especially developed countries, are com-
mitted to the research of navigation technology for unmanned underwater vehicles.
Battlespace Preparation Autonomous Underwater Vehicle (BPAUV) is developed
by the US Naval Research and Planning Agency in cooperation with the Bluefin
Institute of Robotics. It uses artificial intelligence and sensors for navigation and
has the capability of autonomous avoidance and route planning. The Saab Com-
pany of Sweden devotes itself to the research of navigation systems for unmanned
submarines. It has developed the AUV62-MR type unmanned underwater vehicle
with long-distance operation and high-order autonomous capability. A new type of
unmanned underwater vehicle, Oilster, developed by the French company ECA, uses
various sensors to detect surrounding targets and carry out self-protection navigation.
The “TYPHLONUS” type unmanned underwater vehicle, developed by Russia, is
equipped with an autonomous navigation system, mainly used for mine detection,
mine hunting, searching, and detecting submerged nuclear submarines.
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Chapter 3
Is the Vehicle Routing Problem Dead?
An Overview Through Bioinspired
Perspective and a Prospect of
Opportunities

Eneko Osaba, Xin-She Yang and Javier Del Ser

1 Introduction

Routing problems and all their variants are intensive studies in the current optimiza-
tion and operations research communities. The success of these problems resides
in two different aspects: their practical nature and their challenging complexity. On
the one hand, most of the routing problems arise from the necessity of efficient-
ly dealing with a real-world situation, often related to logistics, business or urban
transportation. This is the reason why their solving entails either economic or social
benefits. On the other hand, routing problems are usually categorized as NP-hard
ones, making the searching of optimal solutions a computational demanding task,
even in medium-sized scenarios. This last fact leads the related community to the
design and implementation of a wide variety of artificial intelligence approaches,
with the intention of solving them in a computationally admissible fashion. This
research trend is easily ascertainable just taking a quick glance to the rich literature
regarding different formulations and practical applications.

In this regard, two are the problems which historically have attracted the major-
ity of the researchers’ attention: the traveling salesman problem (TSP, [1]) and the

E. Osaba (B) · J. Del Ser
TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
e-mail: eneko.osaba@tecnalia.com

J. Del Ser
e-mail: javier.delser@tecnalia.com

X.-S. Yang
School of Science and Technology, Middlesex University,
Hendon Campus, London NW4 4BT, UK
e-mail: x.yang@mdx.ac.uk

J. Del Ser
University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain

© Springer Nature Singapore Pte Ltd. 2020
X.-S. Yang and Y.-X. Zhao (eds.), Nature-Inspired Computation in Navigation
and Routing Problems, Springer Tracts in Nature-Inspired Computing,
https://doi.org/10.1007/978-981-15-1842-3_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-1842-3_3&domain=pdf
mailto:eneko.osaba@tecnalia.com
mailto:javier.delser@tecnalia.com
mailto:x.yang@mdx.ac.uk
https://doi.org/10.1007/978-981-15-1842-3_3


com.ca@frederick.ac.cy

58 E. Osaba et al.

vehicle routing problem (VRP, [2]). This specific study is related to the second case,
the VRP, which is widely recognized for efficiently dealing with business logistic
scenarios [3].

Furthermore, a myriad of optimization solvers has been proposed in the last
decades for tackling with the VRP and all its variants. Specifically, three are the
most recurrent ones: exact methods [4, 5], heuristics [6, 7], and metaheuristics. Ar-
guably, the ones that have demonstrated a better performance are the later ones,
especially in the last decade. This is why this study devotes a greater effort to this
concrete solving schemes. In this category, we could place the simulated annealing
(SA, [8]) and Tabu search (TS, [9]) as themost recognized approaches, alongwith ant
colony optimization (ACO, [10, 11]), genetic algorithm (GA, [12, 13]), and particle
swarm optimization (PSO, [14, 15]).

Besides this classical and extensively used schemes, the formulation of novel
solvers remains a hot topic in the community, resulting in the proposal of successful
methods which have made a remarkable impact in the literature. Some examples of
such groundbreaking metaheuristics are the firefly algorithm (FA, [16]), imperialist
competitive algorithm (ICA, [17]), cuckoo search (CS, [18], artificial bee colony
(ABC, [19]), and bat algorithm (BA, [20]).

The adaptation and improvement of all these methods to the VRP and their vari-
ants have led to a rich and bountiful literature, composed by a plethora of high-quality
studies. This extensive research keeps alive the interest in this specific routing prob-
lem, despite being firstly proposedmore than half a century ago. In this line, the main
contribution of this paper can be divided into three different points. First, we devote a
section for describing theVRP and itsmost studied variants, emphasizing the features
considered in the last years. Secondly, we dedicate a comprehensive section for the
systematically outline the research made recently around the VRP. Hereof, we focus
our attention on its tackling through the use of metaheuristic schemes. Finally, an
additional contribution to this study is our personal envisioned status of the research
field, presented in the form of open opportunities and challenges that should guide
the research of upcoming years.

Thus, this paper is structured as follows: In Sect. 2 the VRP and some of its
most important variants are described and mathematically formulated. Section3 is
committed to the systematic overview of the recent research done around the VRP.
Finally, Sect. 5 concludes the paper with a general outlook for the wide audience.

2 Problem Statement

Along the history, the VRP has been studied in many forms and using many for-
mulations. Regarding the basic version of the VRP, it can be defined as a com-
plete graph G = (V, A), where V = {v0, v1, . . . , vn} is the set of vertexes and
A = {(vi , v j ) : vi , v j ∈ V, i �= j} is the set of arcs. The vertex v0 represents the
depot, while the rest are the customers that should be served. Moreover, each edge
(vi , v j ) has an associated cost ci j ∈ R

+, denoting the traveling weight of this arc.
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Besides that, an additional set Q = {q1, q2, . . . , qn} is deemed, depicting the demand
of each client. Specifically, this means that qi is the demand associated to vi . Fur-
thermore, a fleet of vehicles K is available with a limited capacity represented as C .
In some instances of the VRP, this fleet of vehicles is composed of a fixed number of
units. Anyway, in the majority of problem variants, this number is unlimited, being
its minimization one of the main objectives to optimize.

Hence, the principal objective of this basic version of the VRP is to find a number
of routes with a minimum cost such that (1) each route starts and ends at v0, (2) each
customer is visited exactly once, and (3) the summation of the demands served in
each of the routes does not exceed the C [21]. This problem could be formulated as
follows [5]:

Minimize : f (X) =
∑

i=0

∑

i �= j, j=0

di j xi j ∀i, j ∈ V (1)

Subject to constraints :
∑

i=0,i �= j

xi j = 1, ∀ j (2)

∑

j=0,i �= j

xi j = 1, ∀i ∈ V (3)

∑

i

xi j ≥ |S| − v(S), {S : S ⊆ V/{1}, |S| ≥ 2} (4)

∑

i∈S
qi y

r
i ≤= C, ∀r ∈ K (5)

Where : yri ∈ {0, 1}, ∀r ∈ K (6)

And : xi j ∈ {0, 1}, ∀{i, j} ∈ A; i �= j (7)

First clause (1) is devoted to the objective function,which depicts the total distance
traveled by all the vehicles. The variable (6) is a binary parameter which takes a value
equal to 1 if vehicle r satisfies the demand of the client i , and 0 otherwise. Moreover,
the binary variable (7) takes 1 if the arc (i, j) is used in the solution. Restrictions (3)
and (4) ensure that every client is visited by one and only one vehicle, and exactly
once. Lastly, formula (4) serves to eliminate sub-tours, where |S| is the number of
customers and r(S) the minimum number of routes to attend all. Finally, clause (5)
guarantees that the sum of all the demands of a route does not exceed the maximum
capacity C of the vehicle.

The formulation depicted up to now represents the VRP variant widely considered
as canonical. Besides that, many different additions or modifications have been con-
ducted over this formulation with the aim of addressing more complex transportation
and logistics situations and conditions. Probably, the most studied variant is the so-
called VRP with time windows (VRPTW, [22]). In the VRPTW, in addition to the
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basic constraints above mentioned, each customer has an associated time window
[ei ,li ]. This window is comprised of a lower limit ei and an upper limit li , which
must be respected. In other words, the service in every customer must be performed
after their associated ei and before li . Additionally, a time window could be also
considered for the depot, which restricts the period of the whole activity.

One of the principal reasons why VRPTW is so interesting for the researchers
is its dual nature, being deemed as a two-phase problem. The first step regards the
assignment of vehicles to customers, while the second one is related to the planning
phase or customer scheduling. As has been said, the VRPTW has been extensively
studied either in past decades [23, 24] and nowadays [25, 26]. Additionally, we rec-
ommend [27] to readers interested in the mathematical formulation of this variant.
Finally, is it noteworthy that a specific variant of the VRPTW can be found in the
literature, which enables the non-compliance of some time windows (under penal-
ization in the objective function). This variant is called VRP with soft time windows
[28].

Other important variant is the one related with heterogeneous fleet of vehicles. In
the basic version of the VRP, all considered vehicles have the same characteristics,
something considered a limitation for many real-world applications. The so-called
heterogeneous VRP (HVRP) tackles this issue by deeming different road units, each
one with diverse capacities and features. As can be seen in the remarkable survey
study [29], many sub-variants exist within this specific topic, each one depending
on the concrete characteristics of the vehicles. Thus, in Table1, the most often used
formulations are summarized.

As additional constraint often considered by authors is the consideration of not
only delivery of goods to customers, but also the pickup of certain materials. This
feature is especially valuable for waste management and for implementing recycling
policies. As above mentioned for the HVRP, several sub-variants have arose depend-
ing on the specific characteristics of the scenario. These are some of the most treated
ones:

Table 1 Summary of HVRP variants

Variant name Size of the fleet Costs of use Routing costs

HVRP with fixed cost and vehicle-dependent
routing costs

Limited Dependant Considered

HVRP with vehicle-dependent routing cost Limited Not considered Dependant

Fleet size and mix VRP with fixed costs and
vehicle-dependent routing costs

Unlimited Considered Dependant

Fleet size and mix VRP with vehicle-
dependent routing costs

Unlimited Not considered Dependant

Fleet size and mix VRP with fixed costs Unlimited Considered Non-dependant
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• VRPwith Simultaneous Pickup andDelivery: In addition to the usual demand, cus-
tomers can also ask for the pickup of materials. Vehicles conduct simultaneously
pickup and delivery each time they visit a client [30].

• VRPwith Pickup and Delivery: In this variant, customer can only ask for pickup or
delivery, but not both simultaneously. Furthermore, the route can alternate clients
of different kind along the route [31].

• VRP with Backhauls: Similar to the previous one, with the distinction that vehicles
should serve all clients asking for the delivery of good and then the one asking for
pickups [32].

We list here further restrictions and conditions which have inspired additional
formulations of advanced versions of the VRP:

• Split deliveries: In this case, deliveries can be served by more than one vehicle
seeking for cost reductions.

• Time-dependent travel costs: The principal idea behind this feature is that the cost
of traveling between two clients depends on the moment the trip is made. Thus,
travel times could significantly change over the time schedule.

• Open paths: In these scenarios, routes are not obligated to finish in the starting
depot.

• Asymmetric travel costs: In these variants, although there may be arcs where ci j =
c ji , in general ci j �= c ji .

• Wide periods: This characteristic is appropriate in scenarios where the deliveries
should be made in a time horizon greater than one day. Thus, different plans are
built for each considered day.

• Multiple depots: In these environments, multiple depots are spread over the sce-
nario which could be used by the vehicles for constructing routes that optimize
the distance traveled.

• Dynamism: The main philosophy behind this feature is to contemplate the uncer-
tainty nature of real-world situations. In this variant, some of the aspects of the
problem are unknown at the beginning of the planning procedure. Furthermore,
elements such as the demands or the geographic situation of customers could be
also dynamically modified.

• Satellite Facilities: Several satellite depots are available for road units as recharging
points. These facilities could be used to take some materials, deposit recovered
waste or even charge electric vehicles.

In addition, an interesting research activity in this field gravitates around the so-
called rich or multi-attribute VRPs (RVRP). Currently, as can be read in several
works [33, 34], these complex problems are catching the attention of the scientific
community. As we can be found in these surveys, RVRPs are special cases of the
conventional VRP characterized for having multiple restrictions and variables, and
a highly complex formulation. This increase in the problem complexity inherently
entails a major scientific interest, linked to the challenge that supposes their solving.
Furthermore, because of the high amount of conditions, these variants are especially
important for dealing with real-world logistic and transportation situations.
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As can be seen, the number ofVRPvariants existing in the literature is overwhelm-
ing, making impossible the listing and consideration of all the valuable formulations
in this sole section. We have outlined here some of the most frequently recurred
ones, with the goal to establish in the reader the idea that there is a vibrant scientific
activity behind this problem and its multiple forms.

Furthermore, one direct consequence of the existence of such a high number
of VRP variants is the generation and proposal of multiple valuable benchmarks,
used by the community for solving these VRP instances through diverse algorithmic
approaches. Undoubtedly, the most well-known benchmark of this kind is the one
proposed by Solomon in 1987 for the VRPTW [22].Moreover, this influential bench-
mark has served on many occasions as the base for the generation of new ones, such
as the ones created by Osaba et al. for the VRPB [35]. In addition to the Solomon’s
one, several often employed benchmarks can be found also for the VRPTW. Four
different remarkable sets of instances can be highlighted in this regard: Benchmarks
of Cordeau [36], Breedam [37], Homberger [38], and Russell [39]. Related to the
CVRP, many interesting benchmarks have been proposed along the years, being the
one generated by Christofides and Eilon in [40] the most frequently used one for
testing purposes. An additional set of cases for this specific variant are the ones de-
veloped by Fisher [41] or the proposed by Golden et al. in [42]. Further interesting
benchmarks can be found in the literature for additional VRP variants, such as the
ones introduced by Gillet and Johnson [43] for the Multiple Depot VRP, or the gen-
erated by Cordeau et al. for the Periodic VRP [44]. For interested readers seeking
for the obtaining of valuable set of instances, we recommend some of the multiple
Web platforms dedicated to the VRP, its variants and benchmarks, such as VRPWeb1

managed by the University ofMalaga, or theWeb dedicated to Solomon’s instances.2

3 Recent Advances in Vehicle Routing Problem

Since its first formulation, the VRP had rapidly turned into one of the most studied
problems, both for solving real-world transportation problems and for benchmarking
purposes in performance analysis of discrete optimization algorithms. Thanks to this
protracted activity around the VRP, a deluge of solvers has been used for dealing
with this problem and its variants in the last decades. Because of being classical
metaheuristics, GA [45, 46], SA [47, 48], and TS [44, 49] are three of the most
used alternatives, producing valuable scientific material since their inception. Also,
the hybridization of these methods have also been explored in the literature in a
remarkable way [50–53]. Advancing a step in the history of optimization, more
recent algorithms which today are also deemed as classical have also been broadly
employed for solving the VRP. We can place in this category schemes such as the
PSO [54, 55], ACO [10, 56] or the variable neighborhood search (VNS) [57–59].

1http://neo.lcc.uma.es/vrp/.
2http://w.cba.neu.edu/~msolomon/problems.htm.

http://neo.lcc.uma.es/vrp/
http://w.cba.neu.edu/~msolomon/problems.htm
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Finally, the VRP and its multiple formulations have been also object of study from
the perspective of recently proposed nature-inspired approaches, mostly devoted to
measure the quality of these newly proposed metaheuristics. Some of these solvers
are the bat algorithm [60], cuckoo Search [61], artificial bee colony [62], or the flower
pollination algorithm [63].

This brief bibliographic summary helps us to support the theory that the VRP and
its derivations have been extensively addressed by operation research and computa-
tional intelligence communities from different mindsets and viewpoints, and using
many different algorithmic proposal. The research over the VRP is such wide that we
will sharpen our attention on highlighting the advances and research carried out in
the last few years by bioinspired algorithms. Of course, we are completely aware that
the related literature is much bigger than the one outlined in this systematic review.
Thus, we refer interested readers to surveys such as [4, 64–66].

3.1 Vehicle Routing Problem and Genetic Algorithms

Following the same trend as other optimization problems, such as the TSP [67] or
the job-shop scheduling problem [68, 69], genetic algorithm is, arguably, the most
frequently used metaheuristic for solving VRP-related problems. Thanks to its easy
adaptation and efficiency, a surfeit of GA models has been proposed since the first
formulation of this algorithmic scheme. On this regard, a notable amount of valuable
studies has been published in the last years. In the recent paper [70], for example,
Ruiz et al. developed a biased random keyGA for solving an openVRPwith capacity
and distance constraints. Themain feature of themodeled problem is that the vehicles
finish their corresponding routes after servicing the last client, without the need of
returning to the depot. Furthermore, vehicles cannot exceed the trunk capacity and
the previously fixed maximum distance. In [71], a heterogeneous VRP with fixed
cost and green reverse logistics network is tackled using a GA. A valuable rich
variant of the VRP is handled in [72] by Baniamerian et al. In that work, profitable
heterogeneous VRP with cross-docking is presented, in which the main objective is
to increase the total profit of a cross-docking system, and it is solved through the
application of a hybrid method based on a VNS and a GA. Results obtained by this
advanced approach are compared with the those obtained with an ABC and a SA.
Another hybrid scheme is proposed in [73] using as base a GA and a local search
mechanism. In that case, the VRP variant to solve is coined as prize-collecting,
and it has the particularity of adding a customer selection process. This process is
determined because of the unavailability of the fleet of vehicles for visiting all the
clients. Besides that, an influential hybrid GA is implemented in [74], designed for
tackling a group of instances of the heterogeneous fleet VRP with time windows.
Another outstanding work, due to its application to the real-world, is presented in
[75]. In that work, a VRP is used for modeling the problem of student transportation
to the Universiti Tenaga Nasional (in Malaysia), employing a fleet composed by
eight different buses. The designed VRP is addressed by a GA also in that work.
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The success of hybrid methods using a GA in combination with other methods or
mechanisms is also testified in [76]. In that paper, a local search mechanism is used
for improving the performance of a fitness-scaling adaptive GA. The VRP instance
dealt, in that case, is the well-known multiple depot VRP. As can be checked, the
literature around the GA andVRP is abundant nowadays, being the subject of myriad
of works year by year. Interested readers are referred to additional interesting studies
such as [77, 78] or [79].

3.2 Vehicle Routing Problem and Tabu Search

Along the last decades, TS has been successfully applied to a wide range of prob-
lems, raising it to a privileged status in the combinatorial optimization scientific
community. In any case, as time goes by, sophisticated methods have eclipsed some
classical approaches such as the TS in some crucial problems. Fortunately, this is
not the case of the VRP, for which TS still enjoys great popularity, being the fo-
cus of many researches around its many variations. Some valuable examples can
be found in [80, 81]. In the former, a heterogenous fleet is considered as the main
feature of the VRP, while in the latter case, discrete split deliveries and pickups are
deemed as principal restriction. In both cases, the TS is implemented solely, and the
development of advance memory structures are the key of their successful applica-
tion. In [82], Sicilia et al. presented a TS in combination with a VNS for tackling
a rich VRP. The formulation of the problem modeled in that work, which has been
conceived for capillary distribution of goods in major urban areas, counts with six
different features: capacity constraints, time windows, pick and delivery, workload
limitation, compatibility between orders, and open paths. Another interesting study
is presented in [83] by Silvestrin and Ritt, in which a TS is developed for address-
ing a multi-compartment VRP. This characteristic is especially efficient to deal with
scenarios in which several products of different types are available that must be han-
dled separately. Also, valuable are the contributions proposed in [84, 85], in which
two green variants of the VRP are tackled. The main objective of these works is to
build routes which maximize the profit of the user while pollutant emissions and fuel
consumption are minimized. Additional valuable related research can be found in
papers such as [86–88].

3.3 Vehicle Routing Problem and Simulated Annealing

As in the case of the TS, SA is still the focus of many scientific activities dedicated
to the VRP family of problems. In line with the last works described in the previous
sections, in the last years a remarkable amount of relevant works have gravitated
around the concept of green logistics. In this sense, SA has emerged as a success-
ful alternative for dealing with this specific problem. This statement can be easily
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verified analyzing works such as [89–93]. All these works proposed different imple-
mentations of the SA, using diverse movement strategies, codifications, and cooling
schemes. In any case, all of them share the same objective, which is the design of
paths which minimize the environmental footprint. Furthermore, in [94] four dif-
ferent variants of the VRP with two-dimensional loading constraints are proposed.
For solving those problems, authors propose the use of a SA with a mechanism of
repeatedly temperature cooling and rising. In [95], a SA is presented for solving the
open VRP, in which vehicles do not return to the distribution center after attending all
clients. In [96], Mahmudy proposed an interesting improvement of the basic SA for
solving the well-known VRPTW. The same restriction is considered in [97], adding
the particularity of considering pickup and deliveries in its formulation. For dealing
with such variant, authors of that study developed a parallel SA with local search,
in which list of temperatures and cooling schemes are used. Time windows are also
considered in [98], in which a group of metaheuristics are designed and applied to
solve a VRPTW with synchronized visits. Finally, further valuable papers using SA
can be found in [99–101].

3.4 Vehicle Routing Problem and Particle Swarm
Optimization

Thanks to its fast execution time, convergence, and efficiency, the PSO has become
the most frequently employed swarm intelligence method. Likewise, PSO is one
of the most influential methods in bioinspired computation, serving in this way as
inspiration for the development of additional cornerstone approaches. Very briefly
explained, PSO was proposed in 1995 by Eberhart and Kennedy using as motivation
the behavior of bird flocks, fish schools, and human communities. As many other
swarm intelligence algorithms, the PSOwas firstly developed for solving continuous
problems. Nevertheless, many different discrete adaptations were introduced by the
community after conducting few ad hoc modifications in its main scheme. Regard-
ing the VRP, a bunch of high-quality papers have been published in the last decades.
Some worth-citing ones are [54, 55, 102]. This interest on the PSO has not only
be maintained but increased in the last years, leading to the conduction of interest-
ing studies such as [103, 104]. The first of these works is devoted to the resolution
of a business logistic problem, contextualized in a carton distribution industry with
recycling policy. For properly facing the modeled rich VRP, authors implement an
improved PSO, endowed with a self-adaptive inertia weight and a local search strat-
egy. The second of the works above mentioned deals with a production and pollution
VRP with time windows. That work is especially valuable due to two reasons. On
the one hand, authors treat the problem through the multi-objective perspective. On
the other hand, the PSO developed is improved using a self-learning mechanism. In
line with this, the work presented in [105] also addresses the problem using a multi-
objective formulation. In that case, a dynamic VRP is solved using a PSO, using time
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seed-based solutions for dealing with the dynamism of the environment. Moreover,
authors contemplate four objectives to optimize, namely, number of vehicles, expect-
ed reachability time, satisfaction level, and economical profit. Another interesting
dynamic VRP is tackled in [106], using as solving approach a PSO-based hyper-
heuristic. In addition, in the recent work published in [107], a neural-like encoding
PSO for solving an industrial-oriented periodic VRP. Further, recently published
works are [108, 109] or [110].

3.5 Vehicle Routing Problem and Artificial Bee Colony

Since its first formulation by Karaboga and Basturk, the artificial bee colony (ABC,
[19]) has also been adapted for solving different discrete problems such as the TSP
or VRP. Very recent is the work proposed in [111], in which a rich variant of the
VRP coined as waste collection problem. The main objective of this problem is
to build effective waste collection routes for different vehicles. Furthermore, the
variant modeled by the authors contemplates also the so-called midway disposal
pattern, which is used for dumping the wastes dynamically in some of the disposal
facilities spread over the scenario. Another interesting research is presented in [112]
for tackling the well-known CVRP. The method implemented in that paper is an
enhanced version of theABC, inwhich a crossovermechanism is deemed for guiding
the individual updating. A valuable experimentation is conducted in [113], carrying
out a comparison between an ABC and a CS for the basic VRP. The main objective
of that paper is to assess the performance of some important discrete mechanisms
for properly dealing with this problem. In any case, among this specific stream, we
can find as most influential work the one proposed by Ng et al. in [114], in which
a multi-populational version of the ABC is proposed for dealing with a CVRP. The
main feature of this problem is the re-routing strategies implemented for properly
dealing with the time-dependent traffic congestion. This last characteristic endows
the research with a very valuable practical adaptability. Two additional practical
studies related to the VRP and ABC can be found in [115, 116]. The first of these
papers deals with a real western-style food delivery problem in Dalian city, China,
modeling the problem as a VRPTW. On the other hand, the second one proposes a
hybrid method combining an ABC and an advanced adaptive memory mechanism
for the resolution of a green VRP with cross-docking feature. Further remarkable
studies can be found in [117, 118] or [119].

3.6 Vehicle Routing Problem and Ant Colony Optimization

Ant colony optimization arguably belongs to the group of most intensively used
and well-reputed metaheuristics. Since its inception, ACO has shown an outstanding
performance being applied to a wide variety of problems, being the VRP one of these
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cases. In the last years,manyprominent papers have seen the light, highly contributing
to the non-stopping advance of the field. In [120], an influential work is proposed, in
which an ACOwith clustering capabilities and three immigrant schemes is proposed
for solving a VRP variant widely known as location routing problem. Authors went
a step forward with this problem endowing it with dynamic conditions. Another
dynamic VRP is deemed in [121], in which the demands can appear and disappear
dynamically, as well as the geographical situation of unserved clients. The technique
developed in that work is an ACO enhanced with two different mechanisms: an
improved K-means algorithm and crossover operations. Especially interesting is the
research that can be found in [122], in which Wang et al. develop a benchmark of
ACO variants for efficiently simplifying the construction of solutions in VRP-type
problems. A hybrid scheme is proposed in [123] combining an ACO with a VNS for
solving theVRPwith simultaneous pickups and deliveries. In [124], a valuablemulti-
objective multi-depot green VRP is addressed. In that work, an improved ACO is
developed for optimizing four different objectives: revenue, costs, time, and emission.
The main novelty of the implemented ACO stems from an innovative approach in
updating the pheromones. Diverse variants of the green variants of the VRP are also
tackled by advanced versions of the ACO is works such as [125, 126]. Aworth-citing
real-world research can be seen in [127]. In that work, Yao et al. face the problem
of fresh seafood delivery routing problem. The case study of that is placed in Dalian
city, China. To properly solve that problem, authors modeled an ACO improved by
the adoption of scanning strategies and crossover operations. For readers interested
in additional interesting works focused on the ACO studies such as [128–130] are
highly recommended.

3.7 Vehicle Routing Problem and Cuckoo Search

Focusing our attention in recently proposed nature-inspired methods, cuckoo Search
is a method introduced by Yang and Deb [18] a decade ago, inspired by the brood
parasitism of some cuckoo species. In addition, rather than using simple isotropic
random walks, CS is enhanced by Levy flights [131], which is one of the keys to its
success. Along this decade, CS has been applied in many knowledge fields, being
transportation and logistics one of them. This is the reason why many interesting
studies related to CS and VRP can be found in the literature. In [132], for example,
Teymourian et al. develop a group composed by four metaheuristics for dealing
with the CVRP. One of these methods is the CS, which is not only adapted but
enhanced with some mechanisms for improving its performance. Some of these
enhancements are the dynamic adaptation of parameters, or the introduction of a new
group of cuckoos in charge of performing smart local searches. The same problem
is considered in the research published in [133], in which Levy flights are conducted
based on the well-known 2-opt and double-bridge operations. Additional worth-
mentioning works around the CVRP can be found in [134, 135]. These studies
introduce some additional novelties, such as the use of the Taguchi-based parameter
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setting mechanism. An interesting hybrid technique is developed by Chen et al. in
[136] for solving the basic VRP which combines the advantages of a CS, PSO,
and optical optimization. Another hybrid scheme is proposed in [61], in this case,
exploiting the synergies between the CS and the greedy randomized adaptive search
procedure. Furthermore, in [137], a real-world-oriented problem is modeled for the
patient transportation problem. The problem is formulated using as inspiration the
CVRP, and it is solved using an improved version of the CS, in which a new category
of cuckoos is introduced to improve the search capacity of the approach.

3.8 Vehicle Routing Problem and Imperialist Competitive
Algorithm

ICA is a multi-population technique which was conceived in 2007 by Atashpaz-
Gargari and Lucas. Main inspiration of ICA rests on the concept of imperialism,
dividing first the complete population of solutions in independent empires, which
fight to each other along the execution with the aim of conquering the weakest
colonies of the rest of the empires [17]. This method has also been applied in many
occasions to the VRP, being this adaptation to the focused scope of some remarkable
works. We can find the first adaptation of the ICA to VRP problems in the work
proposed byWang et al. in [138]. In that work, the VRPTW is used as benchmarking
problem. In [139], advanced hybrid method is proposed for the multi-source multi-
product location routing inventory problem, which is rich variant of the VRP. The
approach designed for solving this challenging problem explores the synergies be-
tween an ICA and the SA, using as key concept the embedding of the SA acceptance
criterion into the ICA colony movement scheme. An additional remarkable work can
be found in [140] for solving the often treated open VRP. Main crucial factors of
the adaptation proposed in that research are the permutation encoding adopted and
the use of movement operators such as swapping and insertion. Furthermore, a no-
table study has been recently published in [141], presenting a VRP in cross-docking
networks with time windows and solving it through the multi-objective viewpoint.
In that case, the main objectives to optimize are the total transportation cost and the
total earliness and tardiness of visiting retailers. For efficiently tackling this com-
plex instance of the VRP, a multi-objective ICA is developed and compared with the
well-known non-dominated sorting genetic algorithm and Pareto archived evolution
strategy. Results shown in that research certify the ICA is a promising approach for
dealing with this problem. Interested readers on this algorithmic scheme are referred
to the following works: [142, 143].
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3.9 Vehicle Routing Problem and Bat Algorithm

Bat algorithm is a recently proposed method which has gained a lot of attention from
the related community thanks to its fast executions times and good results. Several
outstanding works have been recently proposed which gravitate in the adaptation of
this successful method to different VRP variants. The first reported discretization
to this family of routing problems can be found in [144] to solve the CVRP. Four
different local search operators were used by this first solver: two single-point swap-
ping, insertion, inversion, and single-point swapping with next point local search.
All these operators are randomly chosen each time a bat perform a movement in
the solution space. Concerning the experimentation, a benchmark composed of nine
different datasets is employed in this preliminary research, comparing the obtained
outcomes with the ones produced by a GA. The same problem is deeper dealt by
Zhou et al. in [60]. In that paper, a hybrid BA is implemented based on the framework
of the continuous BA. In order to augment the exploitation ability of the solver, the
greedy randomized adaptive search procedure and path relinking are effectively inte-
grated. Moreover, aimed at improving the performance of this hybrid metaheuristic,
the random subsequences and single-point local search are also operated with cer-
tain probability. Cai et al. also deal with the CVRP in their recent work [145]. In
that work, authors proposed a BA with new parameters and operations, which uses
penalty functions for dealing with the constraint conditions. Additionally, a chaotic
initialization mechanism is also used, based on local search strategies. Moreover,
an interesting version of the BA is proposed in [146] for the VRP with Time Win-
dows. One of the novelties of this work is the adoption of the well-known regret-2
heuristic as movement function. Furthermore, in order to enhance the exploration
capacity, the destroy-and-repair paradigm of the large neighborhood search is em-
bedded to the method. Same VRP variant is handled in more recent [147], in which
novel random reinsertion operators for the BA are derived and tested to reach better
results than naive BA schemes. The experimentation carried out on this study ex-
plored the outcomes obtained over thewhole 56 datasets that composed the renowned
100 customers Solomons benchmark [22]. Finally, an improved version of the BA
is presented in [148] for solving a real-world medical goods distribution problem
with pharmacological waste collection. This high-complexity logistic situation is
modeled as a RVRP with a large number of restrictions. Some of the most impor-
tant aspects of this method are the use of the Hamming distance for measuring the
bats’ difference, and the adoption of the neighborhood adaption mechanisms also
employed previous works such as [149, 150]. For the experimentation, the proposed
approach is tested over 24 different real dataset and compared with three additional
nature-inspired methods. The BA developed on that research emerges as a promising
alternative for handling the designed RVRP.
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3.10 Vehicle Routing Problem and Firefly Algorithm

Several interesting works focused on the FA have been also published in the recent
years, proving that this method is an excellent alternative also in this context. The
study published in [151], for example, proposes a hybrid bioinspired method namely
HAFA. This solver combines the schemes of a FA and an ACO. The rationale behind
this hybridization is the following one: on the one hand, theACOprovides themethod
the basic framework, while the FA is in charge of exploring the uncharted regions
of the solution space. Besides that, the pheromone shaking process inherent to the
ACO is used to assist the escaping from local optimum. The problems chosen for
testing the implemented algorithm are the CVRP and the VRPTW, showing a great
performance in comparison with other seven competitive heterogeneous approaches.
The same VRPTW problem is also dealt in [152], proposing a similar FA method
for its solving. The research issued in [153] also in 2018 presents a discrete FA for
the heterogeneous fleet VRP. The cornerstones of that method are the adoption of
the 2-opt as successor function and the firefly codification, which transforms the
integer-based individuals into real-valued ones. An additional valuable research can
be discovered in [154], in which a hybrid FA coined as Gaussian firefly algorithm is
developed for solving a real-world rich VRP. The case study presented in that work
is focused on a distribution company, established in Esfahan, Iran, and it has as main
objective the reduction of fuel consumption. The problem modeled for the planned
situation is a time-dependent VRP with multi-alternative graph. Finally, in [155],
the performance of a discrete FA was compared with other bioinspired solvers for
the high-complexity VRP problem with pickup and delivery deadlines, selectivity
nodes, and multiple concurrent vehicles. An interesting point of that research is that
the quality of the built routes is defined by the Pareto trade-off between a measure of
fairness in the share of the revenues of the transport company and the profit gained
by the delivery of goods along the routes. In [156], a noteworthy work is proposed
in which a door-to-door service for farm machinery maintenance is modeled as
a rich VRP. The specific problem designed is an asymmetric multi-depot vehicle
routing problem, which authors solve through the adaptation of a FAwith compound
neighborhoods. Additional interesting examples of the FA applied to VRP variants
can be found in [157, 158] or [159].

3.11 Vehicle Routing Problem and Other Nature-Inspired
Metaheuristics

As has been deeply discussed in remarkable literature works such as [160], nature-
inspired community experienced a great impact after the proposal of PSO and ACO
metaheuristics. These groundbreaking methods decisively influenced in the creation
of an abundant amount of techniques which inherits their philosophy and some of
their mechanisms. All these newly created schemes were generated after the scru-
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tinize of natural and biological processes by researchers and practitioners. Thus, in
the same way that the ACO was influenced by the behavior of the ants, or the PSO
by that of the birds, additional phenomena have been considered in last decades such
as (1) social and political behaviors as hierarchical societies, (2) physical processes
such as gravitational dynamics, the natural cycle of the water or the electromagnetic
theory, or (3) the behavioral patterns of animals such as spiders or monkeys.

Having said this, the survey outlined along this section has gravitated toward some
of themost well-reputed and recognized algorithmic schemes. Anyhow,we are aware
that the literature is comprised of a wider number of additional successful methods.
These additional techniques could be equally effective than the ones that have guided
this section, but they are definitively less studied by combinatorial optimization
community.Because of the almost unattainable nature thatwould suppose the labor of
considering all the methods deemed along the history, we have focused our attention
on the ten metaheuristics above described.

Seeking the completeness of this study andwith the aim of partially satisfying pos-
sible readers who may logically think that certain method should deserve a mention,
we show in Table2 a summary of additional metaheuristics that have been adapted
in recent years for solving any instance of the VRP. In this table, we not only depict
the name of the method and some related works, but also the main inspiration of
each solver.

Table 2 Summary of additional nature-inspired methods and their application to the VRP

Name Inspiration References

Flower pollination algorithm [161] Pollination process of flowers [63, 162]

Fireworks algorithm [163] Fireworks explosion and location of
sparks

[164–166]

Symbiotic organisms search [167] Interaction of organisms to survive and
propagate

[168, 169]

Harmony search [170] Mimicking the improvisation of music
players

[171–174]

Honey-bees mating optimization [175] Honey-bees mating process [176–178]

Golden ball metaheuristic [35] Teams and players organization in
soccer world

[179–184]

Brain storm optimization [185] Human brainstorming process [186–189]

Glowworm swarm optimization [190] Luciferin-induced glow of a glowworm [191–194]

Whale optimization algorithm [195] Social behavior of humpback whales [196–198]

Bacterial foraging optimization [199] Social foraging behavior of
Escherichia coli

[200–202]

Gravitational search algorithm [203] Law of gravity and mass interactions [204, 205]

Pigeon-inspired optimization [206] Homing characteristics of pigeons [207, 208]

Penguins search optimization [209] Collaborative hunting strategy of
penguins

[210]

Elephants herding optimization [211] Natural herding behavior of elephants
groups

[189]

Monarch butterfly optimization [212] Migration of monarch butterflies [213]
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4 Challenges and Research Opportunities

As can be easily evidenced in the overviewmade in the previous Sect. 3, the VRP and
all its countless variants still attract a the lot of attention from the related practition-
ers. At this point, and thanks to the current state of computation and the resources
available in hands of researchers, it is time for the community to take a step forward
and tackle new challenges. These open challenges directly lead to the existence of
research opportunities, which can be contextualized along diverse axis. Accordingly,
we outline in this section some of the most important research directions that should
guide the research made in the upcoming years.

• To being with, the rapid advance of the technology has increased the amount and
quality of the resources available by the researches for dealingwithVRP instances.
In this sense, this is an appropriate landscape for practitioners for considering
the dealing of large size VRP instances. The great majority of the experiments
conducted in current literature deal with controlled problem datasets of small–
medium size (in terms of number of nodes). Novertheless, problems arisen in the
real world are usually prone to have a higher magnitude or even features that
evolve along short periods of time. These facts suppose a challenge for the well-
established solving approaches. Indeed, large-scale instances not only jeopardize
the efficiency of many of the conventional metaheuristic methods, but they also
compromise the convergence of these methods. For tackling with this specific
situation, the deeming of techniques framed in the referred as large-scale global
optimization as emerged as a promising alternative. The application of methods
such as the multiple offspring sampling [214] or SHADEILS [215] can unchain
unprecedented benefits for this field.

• Related to the previous challenge, and has been cited, the good health that comput-
ing enjoys today ease the consideration of alternative solving philosophies. Thus,
we highly encourage the related researchers to consider alternative solving strate-
gies for the seeking of computational efficiency and the addressing of demanding
VRP instances and variants. Two of these strategies could be the cooperative
co-evolutionary algorithms [216] and self-adaptive solvers [217]. An additional
research stream that has demonstrated to be promising for solving similar prob-
lems is the so-called transfer optimization [218]. One interesting characteristic
of VRP datasets is that, in many contexts, they share some crucial structures and
knowledge. For this reason, approaches such as evolutionary multitask optimiza-
tion [219] and multifactorial evolution [220] should be considered as promising
research streams. Another interesting knowledge stream that should be deemed
by practitioners is the so-called federated optimization [221]. In these systems,
different agents can share their logistics information, schedules, and plans to other
actors or similar service providers with the objective of obtaining different ben-
efits, such as the use of shared services, the allocation of transport units, or the
hiring of third-party resources.

• Another important point that should be mentioned in this section is related to the
great amount of method that can be found in the literature. Although the existence
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of a plethora of well-reputed and contrasted metaheuristics, a remarkable excerpt
of the community continues analyzing the natural world aiming at finding new bi-
ological phenomena for mimicking. Even today, it is easy to discover recent works
in the literature proposing different solvers based on yet unexplored metaphors.
Some examples are the works [222–224], which introduce methods inspired by
the game of tug of war, food search and mating behavior of butterflies, and the
rhino herd behavior, respectively. The continuous elaboration of these kind of nov-
el methods contributes to the crowding of an already overcrowded literature, and
adding metaheuristics not only offers a clear benefit for the community, but also
augments the skepticism of critical researchers. This same problem was exten-
sively discussed in recent studies such as [160, 225], which critically doubt about
the need of novel methods apparently similar to already published ones. In this
line, through this paper we call for a profound reflection around the challenge of
urgently standstill the elaboration of additional methods. In this regard, the whole
community should work in the same direction, trying to adapt the existing well-
known and sophisticated solver to more complex formulations of the VRP. An
additional research trend is related to the exploration of fruitful synergies between
different existing mechanisms and approaches.

• Finally, the VRP has been used extensively in the last decades as a benchmarking
problem, mainly because in it most basic version is still conceived as inadequate
for being applied to real-world problems. Anyway, the VRP has a greater potential
to be adapted to real situations in comparison to other combinatorial optimization
problems such as the TSP. This is so thanks to the three features that comprise of
its formulation (depot, clients, and a fleet of vehicles), which properly adapted can
deal with complex restrictions and conditions. This specific trend has explored
in the literature, grasping some attention from practitioners [226]. This activity
has led to the adoption of a concept named as multi-attribute or rich VRP. As
has been described, these instances of the VRP are attracting some activity due to
their closer match to realistic situations. Notwithstanding, the research dedicated
to these advanced variants of the VRP is still scarce in comparison to the studied
using it as benchmarking problems. For this reason, we want to highlight in this
study the necessity of modeling new complex formulations of the VRP, which
can directly lead to the efficient addressing of complex transportation and logistic
situations. Another interesting trend in this direction is the consideration of mul-
tiple objectives. Researchers should find heterogeneous and valuable objectives,
such as fairness, distance, cost, or emissions for the formulation of demanding
many-objective VRP instances. Currently, several libraries can be found in the
literature which facilitate the solving of this complex VRP cases. Two examples
are the well-known JMetal [227] or JMetalPy [228].
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5 Conclusions

This research has gravitated on the well-known vehicle routing problem and its
multiple variants. First, we have briefly introduced this famous problem and its
basic formulation, accompanied with the description of some of its most studied and
practical variant. Then, we have dedicated a whole section to systematically describe
the current state and recent history of this problem, highlighting some of the most
remarkable studies published in the last years. We have put our attention on both
classical (SA, TS,GA…) and sophisticated advanced (BA, ICA, FA) solvers. Finally,
we have concluded this manuscript by sharing our envisioned future of the related
community. In this line, we have pinpointed several inspiring open opportunities and
their inherent research challenges, which should gather most of the activities that
will be carried out in the upcoming years. Among these future lines, we advocate the
using of alternative solvers not yet deeply studied, the addressing of bigger and more
applicable datasets, or the exploration of profitable synergies between the solvers
proposed by the related experts along last decades.

As main conclusion, and using as irrefutable proof what has been described
throughout this survey, it is prudent to affirm that the VRP community has an exciting
and prolific future. For this reason, the road that this community has ahead is still far
to coming to an end, being more alive and vibrant than ever.
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Chapter 4
Review of Tour Generation for Solving
Traveling Salesman Problems

Aziz Ouaarab

1 Introduction

Optimization is the process of startingwith a solution and trying iteratively to improve
it otherwise seeking another better, until finding the optimum. Generally, optimiza-
tion problems are not solvable with an exact method. Most of them are very difficult,
and no algorithm is actually able to solve this class of problems in a polynomial time
on a deterministic machine [1]. On the other hand, the representation of the solution
space structure is related significantly to the nature of the problem and thewaywe see
it, so the way the problem is modeled and then solved. Optimization problems are ei-
ther continuous or discrete. Designing a model to a continuous optimization problem
is not the same in terms of complexity while solving a combinatorial optimization
problem.

It is obvious that seeking solution in the continuous space does not impose real
constraints. To move between continuous solutions (change their components), we
only need to modify the current values of its coordinates. This is the case in most
continuous optimization problems, which can be considered as an advantage that
avoids many technical obstacles related to how the coordinates are represented in
the combinatorial space (in our case TSP solution space). As a blocking constraint
to consider in TSP is that for a given solution, the coordinates of the visited cities
are fixed. So, changing the visiting order of the cities is the only way to move from a
solution to a new one. However, this change is not correlated to the solution fitness.

For solving TSP, a great number of approximate approaches are proposed. They
are figured in one or all layers of the described architecture in this chapter. The first
layer contains all methods that generate or construct an initial solution. This solution
is generated randomly, without exigencies about its fitness [2, 3], or by using a
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method to construct a “good” initial solution such as ant colony optimization [4].
In the second layer, the current solution is changed (perturbed) to produce a new
improved one. Here, methods move in the solution space with the aim to find out
the optimal solution in the neighborhood of the current solution, while the method is
not trapped in a local optimum. Therefore, third layer accommodates techniques that
make escaping from local optimum, possible. However, avoiding the local optimum
is not the final objective of optimization process. Finding the global optimum ismuch
more important and difficult. This is why in the last layer, methods that implement
advanced techniques relatively to those of the other layers are grouped. Therefore,
the reason of this chapter is to describe the important parts of approximately solving
TSP procedures considering a model of layers.

In this chapter, we will show, by using TSP, how most of the proposed methods
solve combinatorial optimization problems (COPs), find their place in the presented
model. Because of its simplicity and reduced number of constraints, TSP repre-
sents a pertinent choice to highlight the layers of the shown model. Also, it can be
transformed easily, to a great number of COPs [5, 6].

The remainder of this chapter is organized as follows: Sect. 2 introduces the trav-
eling salesman problem by a historical context and its formal definition. Section3
presents TSP as a combinatorial optimization problem solved by tour construction
and improvement methods. Section4 gives a description of the TSP combinatorial
search space components. Section5 first briefly describes the third and the fourth lay-
er methods and then discusses the performance of each one. An example of how the
layers are figured in one algorithm is shown in Sect. 6, and the chapter is concluded
in Sect. 7.

2 Traveling Salesman Problem (TSP)

2.1 History

Suppose a commercial agent with a prescribed list of cities to be visited and closing
the cycle by returning to the first visited city. To reduce the cost of the trip in terms
of distance, he insists on some rules like: (1) Each city of his list is visited once and
only once. (2) For a given pair of cities, the distance between them is known. These
rules will define a problem that we will give it the name of “Traveling Salesman
Problem” as mentioned by Lawler et al. in [7] and at another version of Tucker in
1983 in [42].

According to the two, previously, fixed rules, the traveling salesman problem
(TSP) has a goal to find the shortest route or minimum trip cost to visit all the n cities
exactly once and return back to the departure city. If n represents the number of the
visited cities, the cardinal of tour possibilities or achievable TSP solutions is given
as n!.
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Fig. 1 Lincoln of Illinois
tour in 1850 [8]
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A fine historical example of the TSP is Lincoln’s tour in 1850. Lincoln worked
as a traveling lawyer with a circuit court. At the time, a circuit was a trip through
several cities, whereas in each city, he stopped and treated local cases, and he spent
a few days there. The visit that the traveling tribunal (and Lincoln) took in 1850 is
illustrated in Fig. 1 (they started from Urbana and returned to it). He is very close to
the optimum. So, a shorter solution was found, but it is not clear that it was shorter
as much as the travel time in 1850 [8].

2.2 Definitions

Davendra defines formally TSP in [5] as follows:
Let C = {c1, . . . , cn} be the set of distinct cities in space, E = {(ci , c j ) : i, j ∈

{1, . . . , n}} is the set of arcs between each pair of cities, and dci c j the cost associated
with each arc (ci , c j ) ∈ E . The TSP consists of finding the minimum length of the
closed tour that visits each city once and only once. Otherwise, an ordering π of
cities such that the total time for the salesman is minimized. The cities ci ∈ C are
represented by their coordinates (cix , ciy), and dci c j = √

(cix − c jx )2 + (ciy − c jy)2

is the Euclidean distance between ci and c j . A tour can be represented as a circular
permutation π = (π(1),π(2), . . . ,π(n)) cities from 1 to n if π(i) is interpreted to
be the city visited in the step i , i = 1, . . . , n. The cost of a permutation (tour) is
defined as

f (π) =
n−1∑

i=1

dπ(i)π(i+1) + dπ(n)π(1) (1)
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If dci c j = dc j ci , we are talking about the symmetric Euclidean TSP, and if dci c j �=
dc j ci for at least one arc (ci , c j ), the TSP is called asymmetric problem which is
generally more difficult to solve. In what follows the TSP refers to the symmetric
TSP.

The TSP can also be modeled as a weighted graph G = (C, E). The set of n
vertices C of the graph corresponds to the cities, and E is the set of arcs or edges
which corresponds to the connections between the cities. These arcs are weighted,
and this weight between its two cities represents the distance in the case of TSP. Let:
(Mi j ) be a distance (or cost) matrix associated with E . TSP consists of determining
the minimum circuit distance passing through each vertex once and only once. In
several applications, M can also be interpreted as a cost or travel time matrix. M is
said to satisfy the triangle inequality if and only if ci j + c jk ≥ ciK for all i, j, k ∈
1, 2, . . . , n. This occurs in Euclidean problems, i.e., when C is a set of points in
R

2, and dci c j is the straight-line distance between ci and c j [9]. A TSP tour is a
Hamiltonian cycle, and the optimal tour is the shortest Hamiltonian cycle.

2.3 Applications

TSP has mere appearance and statement that does not require much mathematical
knowledge to understand it and a high level of thinking to get a solution. However,
it is actually very important, either in its theoretical side as an experimental base
for studying various optimization techniques or practical domain as a model for
real-world problems. Lenstra et al. and Reinelt [6, 10] have shown various industri-
al and technological applications of TSP, such as overhauling gas turbine engines,
X-ray crystallography, computer wiring, order-picking problem in warehouses, ve-
hicle routing and mask plotting in PCBs production. Each of these problems can
be formulated as a traveling salesman problem from, where most of them were not
immediately recognized as TSP. Moreover, not only are the special cases of the TSP,
but with the formulation as a TSP, it is essentially the simplest way to solve them [6,
11, 12].

3 Best Tour Generation

The traveling salesman problem belongs to a class of NP-hard problems [13] and is
still a big challenge for researchers in this field. Papadimitriou [14] has shown that the
complexity of Euclidean TSP is NP-complete. Even the problem of simply verifying
whether a given solution is optimal is also intractable. No algorithm can obtain an
exact solution or a solution with a predefined accuracy in a polynomial time. Its
complexity of computation exponentially increases with the number of cities.

The hardness of TSP comes from its definition. Because, solving TSP is finding
exactly the optimum, which is not yet possible in a polynomial time. To treat approx-
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imately this situation, we can find a great variety of techniques [12]. Considering
how these techniques generate the optimal solution for TSP, we will group them
under two principle classes: tour construction in a short computation time even if
its quality is moderate and iteratively improvement (of the built tour) to reach the
optimal tour in a reasonable computation time.

3.1 Tour Construction

Related to our model, tour construction methods compose the first layer. As the first
treatment on the problem instances, solutions are built in a reduced runtime.However,
its quality is moderate. After building a solution, the method is stopped, and it never
makes any improvement on the constructed solution. The idea is to produce a solution
by an iterative addition of its components to the existing sub-solution (partial solution
at a given iteration).

The most known construction methods are the greedy methods [15]. Among its
variants, we cite the nearest neighbor algorithm. In the case of TSP, a salesman
traveler searches iteratively the nearest city that remains outside the built tour. In
another variant, the traveling salesman feeds the incomplete solution by the iterative
selection of the shortest arcs and adds them to the current solution without closing
the tour, as he did not reach arcs or increase the node degree more than 2.

We can also talk about insertion methods that start initially with an arc or a closed
sub-solution of three arcs, and in the following, the insertion of the rest is done by
some heuristics [16, 17].

These examples (and other construction methods are cited by Davendra [5]) show
that the main objective of these methods is not seeking for the best solution, but the
reduced calculation even if the solution quality is moderate. Despite their generated-
solution quality, construction algorithms remain widely used but as auxiliaries in
other methods. They are called to, initially, construct solutions or within their pro-
cedures.

3.2 Tour Improvement

To make improvement, algorithms begin with an initial solution, possibly generated
by a construction method. They proceed to an iterative improvement of the solution
until obtaining a not improvable (block situation) solution. Generally, they manage
intelligently simple changesmade to the current solution. Consider this, every change
on the current solution leads to new one nearby in the search space. They, then, seek
to improve solutions by making local moves in the neighborhood, while the solution
is improvable. In the case of minimization, this disturbance is performed only if the
new tour is shorter than the current tour. So, this process is repeated as long as there
is a possible improvement or other stopping criteria not met.
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Tour construction algorithm considers TSP as a set of cities to be stacked to form a
cycle; however, tour improvement algorithms see TSP as a set of tours to be perturbed
to find the optimum configuration.

From the second layer, TSP is shown as a space of feasible solutions or permu-
tations. So, before passing to the rest of layers, we will give a detailed description
of the TSP space and how all techniques of these layers are performed while seeing
TSP as combinatorial optimization problem.

4 TSP Solution Space

Most of combinatorial optimization problems from practical or theoretical fields,
engineering or computer science, are designed to guide research toward a solution,
combination or an optimal configuration of a set of variables in the context of some
constraints. The aim of any COP is to find an object from a finite set or infinitely
countable. This object is typically an integer, subset or a graph structure [18].

When we talk about COPs, designing a preference model for the solutions is
not enough to deal with how to find the optimum because the set of all alternatives
(feasible solutions) is defined in understanding. And its size prevents any explicit
enumeration. Therefore, simple approaches like dynamic programming and greedy
algorithms are not extended naturally with the presence of complex preferences. The
greater part of the studied optimization problems in combinatorial context is NP-
complete. While resolving such problems [19], there exist no effective algorithms.
However, search algorithms try to overcome the constraint of complexity with more
leniently concerning achieving optimality. They intelligently look for good solutions
even if they are not optimal but found in an acceptable runtime [20]. Therefore,
designing a tuned model for the solution space is a crucial part, for helping search
algorithms to make significant moves. It decides how solutions will be placed and
connected and how the search process will be performed.

4.1 Search Space Model

Most of combinatorial optimization problems like traveling salesman [7] and others
[21–26] consider their feasible solutions as integer (or binary) series when they
are solved approximately by a search algorithm. The main characteristic of any
solution of the search space is its position (combination of discrete variables)which is
associated to a value reflecting its fitness. All the neighbor solutions have connections
between each other. These connections are the operation needed to change position
from the current solution to a neighbor one. So, our search space is shown in Fig. 2
as a graph, and the connections between solutions are the arcs of the graph.
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Fig. 2 Combinatorial
solution space

Solution

Move

Moving from a given solution to another one is the result of changing the co-
ordinates (the cities order) of this solution to generate a new one. To show more
description about how the combinatorial search space is designed, we will discuss
its main components which are solution (or position), move and neighborhood.

4.1.1 Solution

In the search space, solutions are considered as the main component which is com-
posed of variables (coordinates) related to the appropriate model of the treated prob-
lem (TSP in our case) [27]. While TSP search space is combinatorial, the coordinate
variables of each solution are discrete (Fig. 3). The solution fitness is controlled by
an objective function and affected by changes over the coordinate variables [28, 29].

In the TSP combinatorial space, Fig. 3 shows a solution that is composed of cities
ci ordered with respect to a permutation π . Consequently, two solutions are different
if the visit order of their cities is different, regardless if the departure cities are the
same or not.

Fig. 3 Solution in the search space
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4.1.2 Moves

In TSP, the coordinates of a given solution are changed according to their charac-
teristics. Generally, changing the solution position is done by a new combination
or permutation controlled by a group of techniques called moves [30]. They are all
based on edge-exchange or node-insertion [31].

In this section, we will list the most known families from the simplest to advanced
moves. The discussion about their performance and how they are used is developed
in the following.

Two adjacent cities exchange
Exchanging two adjacent cities in the current tour is among the simplest moves in
TSP. This operator (Fig. 4) is characterized by generating a relatively reduced number
of new possible solutions (size of the neighborhood) that is equal to N [32].

Two adjacent cities exchange is a poor operator in terms of searching efficiency.
The perturbation is on just two adjacent cities, so the search is very slow, and it
cannot find solutions out of its small search region. Replacing two adjacent cities (N
exchanges) by any pair of cities (N 2 exchanges) is turning short configurations into
long ones but still have no effective searches [33].

2-opt move
Croes [34] has introduced, first 2-opt move. Otherwise, Flood [35] has before sug-
gested its basic move.“2-optimal” or 2-opt is the most famous change/move, for
TSP solutions [33]. Two arcs are removed in the tour, reversing one of the resulting
sub-tours and reconnects the two newly created paths differently, as shown in Fig. 5.
The worst-case complexity for searching with one move is O(n2).

3-opt move
In 3-opt [36, 37] (Fig. 6), the exchange replaces up to three edges of the current tour.
The three resulting paths are put together in a new way, possibly reversing one or
more of them. The complexity for searching the neighborhood defined by 3-opt is
O(n3). 3-opt is also considered as the special case of 1-shift [38].

Fig. 4 Two adjacent cities
exchange
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Fig. 5 2-optimal move
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Fig. 6 Example of 3-optimal possible moves

2.5-opt move
A variant between 2-opt and 3-opt moves proposed by Bentley [39] to reduce the
complexity of 3-opt procedure is called 2.5-opt. It expands 2-opt neighborhood by
including a part from 3-opt moves. 2.5-opt move changes the position of one city to
its new position elsewhere between two neighbor cities in the tour. In Fig. 6, the part
used from 3-opt moves is when cities b and c are considered as one city [32] (Fig. 7).

Double-bridge move
4-opt is a move where up to four edges are changed in the tour. Another variant of
the 4-opt move, that is considered as a simplified move thanks to its non-sequential
nature, is the double-bridge move as shown by Lin and Kernighan [40] (Fig. 8).
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Fig. 7 2.5-optimal move
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Fig. 8 a Double-bridge and b 4-optimal move

Other moves
k-opt moves for k > 2 are a generalized case of 2-opt move. It can be performed by
a finite sequence of 2-opt moves [12]. A step is the distance between two solutions.
It is related to the space topology and the neighborhood notion. Steps are generally
classified according to their lengths which highly depend on how the perturbation is
applied and its iterated application on the initial solution position.

Crossover and mutation moves are performed as an uncontrolled random jump
that diverse the search, which is not adapted to intensify the search to promising
regions. Mutation, as a unary operator, is depending on the chosen neighborhood
of the current solution. The new explored neighborhood is reached by replacing a
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predefined number of edges in the current solution in a way the mutation avoids
returning to the past position by the subsequent local search.

While crossover operator is binary, it has been developed to perform special
“jumps” within the search space of local minima. Crossover considers the solution
space of TSP as a “globally convex” or “big valley”, such that it tries to find the
optimal solution near to the center of the valley of near-optimum solutions [41].
So, the neighborhood structure or any information about the incorporated topology
might be helpful [42].

4.1.3 Neighborhood

The search space is composed of connections or arcs between solutions. This con-
nection is the only condition to define the neighborhood notion in a given space
topology. The notion of neighborhood in combinatorial spaces requires that a neigh-
bor solution is the one that is generated by one canonical change (small steps) on the
current solution. Regions are then specified by a group of solutions that are distanced
with one canonical move in the same space topology (or neighborhood).

When approching the optimal solution, considering neighborhood moves is im-
portant to keep searching in this promising region. All searchmethods have to control
and balance intensification and diversification [43] described later. So, to perform
this balance, we need to differentiate neighbor solutions from distant solutions.

To stay and exploit in a given region, intensification uses small steps to move
from one position to another. It has to keep searching in the neighborhood of the
current solution. To do this, we have to control the step size and the width of the
neighborhood.

Some of the proposed k-exchanges are used to represent a small step and small
neighborhood and some others for big jumps and large neighborhood.

For example, 3-opt explores the space muchmore than 2-opt. However, the size of
the neighborhood is larger and consumesmore time to search. Also, “non-sequential”
exchanges for double-bridge move are considered as big jump out of the neighbor-
hood of the current solution [30].

Neighborhood is alsomeasuring distance between solutions in the space. A neigh-
bor solution is a solution which are not far from the current solution. The distance
between two TSP tours can be simply in terms of their differences in structure. If
tours T and T′ have differences in k links, then the distance is k. That is related to
k-opt moves [44].

The cardinality of neighborhood or its size is not the one thing that matters while
studying neighborhoods. Reachability of the solutions is also an important param-
eter. Some tours of the TSP are not reachable from each other if we consider some
neighborhood structures [12]. The aim of designing neighborhoods is to be able to
balance between intensify the search in the neighborhood of the current solution and
a diversification out of this neighborhood by producing a big jump. This jump can
be performed by a sequence of small steps, with no improvement, or by changing
the structure of the neighborhood (topology) by changing the move.
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4.2 Constraints

One of the important reasons behind studying neighborhood and distances between
solutions is to adapt the steps to the variation of the objective function values. The
minimum change on a solution must produce a small change on the solution quality.
We can consider a good neighborhood structure as the one that avoids containing the
optimum and a bad solution in the same region.

The main constraint while solving combinatorial optimization problems is the
relation between objective function and topology of the search space. A small move
from one current solution in its neighborhood does not imply that the difference, in
terms of fitness, between those solutions will be necessarily small.

5 Search Methods

Local search methods for combinatorial optimization proceed by performing a
sequence of local changes in an initial solution which improve each time its fit-
ness until a local optimum is found. But, evaluating the neighborhood of a solution
can slow the search process if all possible moves in this neighborhood are visited.
Among many techniques, local search methods choose the first improving move to
reach the local optimum faster. To make the improving move, some methods evalu-
ate solution by solution sequentially or a limited number of evaluations on solutions
chosen randomly [45].

The previously described class of methods can be grouped in the second layer.
However, the process of optimization is not just iteratively improving the current
solution,with local searchmethods, until finding the optimal solution. It is also having
the ability of escaping the local optimum which is the distinguishing characteristic
of the third layer. Here, the relation between layers is complementary. Methods of
layer i serve those of i + 1, and methods of layer i + 1 complete those of i .

Search methods are typically incomplete when the local search process is stopped
even if the solution found is not optimal. A good search method is not only the one
that can find the local minimum. It has to be able to change the neighborhood when
a local optimum is found to reach the best solution of the search space.

To complete the search process of a local search method, a variable-k neighbor-
hood search can be performed. It solves TSP by iteratively improving a solution with
k-change moves, while k is 2 or 3. In this example, the local search can be guided
by 2 or 3-opt moves and “double-bridges” for a big jump [46–48]. This kind of
methods is viewed as variable depth methods, since the type of moves carried out at
each iteration is dynamically determined, and varies from one iteration to the next.
Changing the moves here is to search in a different space topology to avoid reversing
the search and so returning to the previously visited regions.

Methods such as Taboo Search (TS) [49], in order to overcome this localminimum
problem, implement in many ways a taboo list. To avoid recycling, it changes its
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current position to a new neighbor solution whatever its solution nearby fitness,
which decreases the quality of the current solution. On the other hand, simulated
annealing (SA) [50] chooses randomly a neighbor solution. Each new solution is
accepted according to its fitness and the temperature parameter which decreases the
new solution acceptance probability.

There are other single-solution algorithms that have partial differences in the
way they follow to escape the local minimum, such as Iterated Local Search (ILS)
[51], Variable Local Search (VLS) [52], Guided Local Search (GLS) [53] and many
others. Layer three contains methods that escape the local minimum with the help
of two principal techniques. The first is changing the topology of the search space
by performing more than one move. And the second generally keeps the same move
but displaces even if the new found solution is not better than the current one.

Population-based methods considered also as another way to handle the problem
of local optimum. They improve, during iterations, a population of solutions. The
main characteristic of these methods is to move to another level of research with
more diversity and cooperation between individuals or across generations in the
population.

In order to find a high-quality solution in a reduced runtime, different approximate
methods are proposed. Among these methods, the most effectives are metaheuris-
tics [54–56]. Indeed, metaheuristics have proven their robustness to solve several
optimization problems. Most of metaheuristics begin with an initial solution (or
population) and try to reach the optimum solution by an improvement process. At
each step, they change the combination of the current solution to generate an im-
proved one and move to the new generated solution. It is a strategic research to more
effectively explore the search space, with often focus on promising regions.

As the main method of the fourth layer, to find the optimum, metaheuristics are
in principle based on the notion of intensification and diversification, in order to
select the best possible solutions that are around the current solution, or randomize
the search to regions far from the last visited solution. Metaheuristics need to keep
exploring new regions while encouraging investment in promising regions over a
limited period of time. Generally, intensification and diversificationmust be balanced
intelligently and dynamically [57].

Whatever simple improvement algorithmor an intelligentmetaheuristic, they look
at TSP as a space of solutions. They do not care how the solution is built as much as
how to iterativelymove from the current position (solution) to a new onemuch better.
Therefore, every information about this space and its topology enhance the chance
to move effectively and find out the optimum as quickly as possible. An example of
this information is to differentiate between exploring and exploiting moves and, in a
specific topology, between a small and big steps.

In the case of population-based methods, how individuals communicate, share
position of good solutions is an important characteristic of fourth layer methods.
Sharing information and experiments is not just between individuals of the same
population, and it can pass to individuals of the next generation.
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6 Example: Discrete Cuckoo Search

To illustrate the layer model, we take as example, discrete cuckoo search (DCS) for
the traveling salesman problem developed by Ouaarab et al. [47]. It shows how the
solution passes from the first layer to the fourth one and how each layer complements
the others.

6.1 First Layer: Construct a Solution

In this layer, DCS generates a solution randomly. It begins from an initial city and
randomly adds the next one to the tour until the last city. The result is a permutation
as follows (Fig. 9).

6.2 Second Layer:Improving the Solution

DCS has used 2-opt move in its improvement method. The idea is to repeat this
move, while the improvement is possible. There exist several ways to implement
this technique. Among them, we cite the first improvement or the best improvement
method. In DCS, they performed the best improvement after m move evaluations
[58] (Fig. 10).

Fig. 9 Random TSP
solution

c1 c2 c3 . . . cn TSP tour

Fig. 10 2-opt improvement
method

c1 c2 . . . cn New TSP tour

c1 c2 . . . cn Initial solution

I terations

2opt move

c1 c2 . . . cn Not improvable solution
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6.3 Third Layer: Local Optimum Escaping Methods

In this important layer, DCS has implemented two techniques to escape from the
local optimum. The first is double-bridge move Fig. 8 which is a perturbation move
characterized by its big jump in the 2-opt neighborhood topology. And the second
is a sequential applications of 2-opt moves on the current solution without testing
improvement and accept the generated solution. When the improvement process is
blocked in a local optimum, DCS alternates between double-bridge and sequential
2-opt moves regarding the value generated by Lévy flight distribution [58].

6.4 Fourth Layer: Discrete Cuckoo Search

The fourth layer in DCS is how it controls the other layer techniques. It uses a popu-
lation of initial solutions created thanks to the first layer. Each population individual
improves its fitness by implementing 2-opt improvement method. Then, the third
layer is used by DCS to help individuals to escape from the local optimum. The
population structure [47] is performed also to select the best individuals in order to
share their experiences with others, and the worsts are removed and replaced by new
ones.

In this layer, we can see howDCS searches intelligently for the optimum by using
the main technique of metaheuristics which is intensification and diversification. It
mainly exploits by using improvement method and sharing experience between pop-
ulation individuals and explores by escaping from the local optimum and replacing
the worst individuals.

7 Conclusion

Among operational research problems, TSP is one of the most studied, transformed
and solved. The main two discussed ideas in the present chapter are to highlight the
principal components of TSP space of solutions and in the other side, show up how
methods dealing with TSP approximately form four groups that can be hierarchically
presented as layers.

For the first layer methods, the search space components are the cities or edges
between cities. They try iteratively to search in this space the next best component
to build the solution. After having the built solution of the first layer, the second
layer presents the search space as a graph of solutions and moves. The third layer has
the permission to change the topology (type of move) of the solution search space.
The final layer methods search in the space much more intelligently and can detect
effectively promising regions.
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This analytic study has chosen TSP because of its reduced number of constraints
which relatively facilitate the representation of the search space and the moves
between the feasible solutions.

This model can be useful to design generic methods that try to solve TSP
dynamically by simply generating a combination of four layer methods. They will,
at each layer, take the well-adapted method to the treated instance and complete the
process by passing to the next layer until the final one. Following this perspective, it
is possible to extend the proposed concept to solve the variants of TSP and problems
that can be transformed to it, with a minimum number of generic methods.
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Chapter 5
Flow Shop Scheduling By
Nature-Inspired Algorithms

M. K. Marichelvam, Ömür Tosun and M. Geetha

1 Introduction

Scheduling problems were addressed by several researchers for the past many
decades based on their theoretical and practical impacts. Scheduling is one of the
critical decision-making tasks in our daily life. In scheduling, limited resources are
effectively allocated to meet certain objective functions over time [4, 53]. Most of
the scheduling problems were known to be non-deterministic polynomial time hard
(NP-hard) type combinatorial optimization problems. As it is difficult to solve and
find an optimal solution in a reasonable time to these problems, several nature-
inspired algorithms were proposed to find near-optimal solutions to them. These
algorithms were developed by aping the behavior of various animals, birds, insects,
etc. In this chapter, ant colony optimization, African wild dog algorithm, artificial
bee colony (ABC), bacterial foraging optimization algorithm (BFOA), bat algo-
rithm (BA), cuckoo search (CS), crow search algorithm, firefly algorithm, flower
pollination algorithm, fruit fly optimization algorithm, gray wolf optimization algo-
rithm, invasiveweed optimization algorithm,migrating birds optimization algorithm,
monkey search algorithm, particle swarm optimization algorithm, rhinoceros search
algorithm, sheep flock heredity algorithm, shuffled frog leaping algorithm, water
wave optimization algorithm andwhale optimization algorithm are considered in this
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chapter. The next section will present the flow shop scheduling problem. Section 3
will illustrate the literature review on the various algorithms to solve the flow shop
scheduling problems. Then, the future scope will be addressed in Sect. 4. Finally,
Sect. 5 will conclude the section.

2 Problem Definition

Flow shop environment can be seen in different production environments like auto-
motive, electronics, furniture and others. A flow shop comprises a group of m
machineries aligned in sequences, and n jobs are to be ordered [23]. Every job
should be worked on the existing machines in a pre-determined specific job order.
A job is first handled to machine 1, following to machine 2 and at last finished on
the final machinem. The working period of the jobs is known before which are fixed
and nonnegative. It is also estimated that the jobs are accessible at time zero. Each
of the machines can process only one job at a given time, and each of the jobs can
only be processed on one specific machine at a given time. The processing activity of
each job cannot be disturbed, which is, preemption is not permitted. Finally, it is also
known that the machines are existing through the complete scheduling time period
(known as no machine breakdown). A simple flow shop scheduling environment is
given in Fig. 1.

The permutation flow shop scheduling (PFSS) problem, which can be character-
ized as α/β/γ, and in this notation, the first term refers to the machine environment
(flow shop), the second term is the processing restrictions or constraints (permuta-
tion), and the third term is the objective to be minimized (makespan or total flow
time).

1

3

2

n

M1 M2 Mm

n jobs m machines

Fig. 1 Layout of flow shop scheduling environment
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In the flow shop problem, there are n jobs are to be processed on m-machines.
All jobs must be processed on every machine in the same given sequence. For the
makespan or total flow time approach, the aim is to find best the permutation of jobs
to be valid for each machine that minimizes the given objective function.

For Fm/prmu/Cmax problem, C(ji, k) denotes the completion time of job ji on
machine k, π = (j1, j2, …, jn) denotes a permutation of all jobs, and pi,j is the process
time of job i on machine j. The completion time for an n-job, m-machine flow shop
problem is calculated as follows [41]:

C( j1, 1) = p j1,1 (1)

C( ji , 1) = C( ji−1, 1) + p j1,1, i = 2, . . . , n (2)

C( j1, k) = C( j1, k − 1) + p j1,k, k = 2, . . . ,m (3)

C( ji , k) = max{C( ji−1, k),C( ji , k − 1)}
+ p ji ,k, i = 2, . . . , n; k = 2, . . . ,m (4)

Cmax is the makespan that can be defined as the completion time of the last job in
the manufacturing system. Makespan can be calculated as

Cmax(π) = C( jn,m) (5)

So, the PFSS problem with the makespan criterion is to find a permutation π* in
the set of all possible permutations Π such that

Cmax
(
π∗) ≤ C( jn,m) ∀π ∈ � (6)

Let F(ji) be the flow time of job ji and is equal to the completion time C( jn,m) of
job ji on machine m since ready times are zero. Total flow time of a permutation π

can be found by summing or the flow times or completion times of the jobs (TFT(π )).
Therefore, total flow time can be found as

TFT(π) =
n∑

i=1

F( ji ) =
n∑

i=1

C( ji ,m) (7)

So, the PFSS problem with total flow time criterion is to find a permutation π*
in the set of all permutations Π such that

TFT
(
π∗) ≤ TFT(π) ∀π ∈ � (8)

For earliness or tardiness objectives, due date of a job j is given by dj. It is assumed
that all jobs are ready at the starting point, and job preemption is not possible. Also
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to prevent the processing from interruptions, there is enough buffer space between
each successive machines. In the basic approach, there is no machine blocking and
waiting time bottleneck between the following machines.

This kind of problem is given as Fm/d j/
∑

E j + Tj . Ej is the earliness of job j
and it is defined as the time by which the job j is finished before the due date dj. Tj is
the tardiness of the job j and it is defined as the time by which job j is finished later
than the given due date dj.

Objective of this kind problems is to find the best schedule that minimizes
the

∑n
j=1

(
E j + Tj

)
, which is the sum of earliness and tardiness. Here, E j =

max
{
0, d j − C j

}
and Tj = max

{
0,C j − d j

}
.

3 Literature Review

This section presents a detailed literature review on various nature-inspired algo-
rithms and their variants to tackle the flow shop scheduling problems with a variety
of objective functions.

3.1 Ant Colony Optimization (ACO)

The main idea of the ACO was the pheromone trail used by real ants as a basis for
communication and feedback between each of themwhile searching for a food source
[12]. Simple agents as ants are used in this population-based algorithm. The con-
struction of solutions is guided by (artificial) pheromone trails and problem-specific
heuristic information. The algorithm starts with an individual ant and its pheromone
trail. If more ants used the same way, the intensity of the pheromone (chance of
selection of that food source (or solution)) increases. If a food source is selected
by less ants, its pheromone is evaporated (meaning the probability of that solu-
tion’s selection is decreased). Usually, different local search-based improvements
are added to the structure of the algorithm. Rajendran and Ziegler [59] developed
two different ACO for PFSP with total flow time. Comparing their algorithm against
another ACO (which is said to have given the best solutions up to that time), their
improvements give better solutions for the benchmark problems. Gajpal et al. [15]
proposed an ant colony algorithm to minimize the makespan in SDST flow shop
scheduling problems. A new ACO algorithm is developed, and its performance is
compared against an existing ACO and two other heuristics from the literature. It is
seen that the new algorithm gives better solutions against the others. Rajendran and
Ziegler [58] have handled the problem of scheduling in permutation flow shops by
utilizing ACO algorithms using the objective of minimizing machine total flow time
and makespan. The efficiency of the proposed ant colony optimization algorithm has
been evaluated by considering the benchmark problems. Rajendran and Ziegler [57]
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proposedmulti-objective ACO to produce non-dominated solutionwith the objective
of minimizing makespan and total flow time in permutation flow shop scheduling.
Yagmahan and Yenisey [84, 85] applied multi-objective ant colony system algorithm
tominimize the both objectives ofmakespan and total flow time in flow shop schedul-
ing. Reported results are better in terms of the performance solution when compared
to other heuristics.

3.2 African Wild Dog Algorithm

Thismetaheuristics is based on the communal (or social) hunting behavior of African
wild dogs which live in packs of up to 20 adults and their dependent young. By mov-
ing as a group instead of individuals, the chance of getting a hunt (or prey) increases.
For an optimization problem, each dog is accepted as a solution of a problem,whereas
prey is the solution of the related problem. If a wild dog moves near its prey, the solu-
tion improved, which is mostly known as local search [74]. Marichelvam and Geetha
[40] solved the PFSP with makespan using African wild dog algorithm. It is stated
the algorithm is a very simple which only have two control parameters, whereas most
of the metaheuristics have several. Using difference benchmark problems, algorithm
is compared against heuristic approaches and gives better results than them.

3.3 Artificial Bee Colony (ABC)

The artificial bee colony (ABC) algorithm consists of three kinds of bees called
employed bees, onlooker bees and scout bees which simulates the foraging actions
of a real bee colony. In the basicABCalgorithm, candidate solution of an optimization
problem is represented with the position of a food source, and the nectar amount of a
food source corresponds to the profitability (fitness) of the related solution. Employed
bees are assigned for exploiting the nectar sources discovered before and giving this
information to the waiting bees (onlooker bees) in the hive. This information is about
the quality of the food source positions which they have exploited. Scout bees either
randomly search the environment in order to find a new food source depending on an
internalmotivation or based on possible external clues. Each food source is harnessed
by only one employed bee. So, in the ABC algorithm, the number of employed bees
is equal to the number of food sources existing around the hive.

There are three basic tasks in the ABC algorithm repeated until a termination
criterion is met:

1. Each employed bee is assigned to a food source, and their nectar amounts are
measured.
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2. Employed bees return to their hive and share the pre-gained knowledge about
food sources (quality of the solution) with onlooker bees. According to this
information, onlooker bees select a food source and explore around it.

3. If a food source is not improved for a pre-determined number of trials, abandon
that source, and its employed bee becomes a scout bee. Produce a random food
source for the scout bee.

Tasgetiren et al. [78] applied a simple artificial bee colony algorithm in permu-
tation flow shops with the objective of the total flow time. ABC is hybridized with
different variants of iterated greedy algorithm. Also, a hybrid differential evolution
algorithm based on local search is given. Tasgetiren et al. [76] applied discrete artifi-
cial bee colony (DABC) algorithm tominimize total tardiness for no-idle permutation
flow shop scheduling with different due date. They tested DABC algorithm with the
benchmark problems. They reported that the performance of DABC algorithm is
better than GA. Liu and Liu [34] developed a hybrid discrete artificial bee colony
algorithm to minimize the makespan in permutation flow shop scheduling problems.
In this method, initially greedy randomized adaptive search procedure (GRASP)
based on heuristics used to generate the initial population, and then, new solution
produced from the distinct operators and algorithm such as insert, swap, path relink-
ing and GRASP for the employed bees. Also, this hybrid algorithm was tested with
benchmark problems. Ribas et al. [61] introduced a high-performing model for the
blocking flow shop problem under total flow time criterion. Different food searching
strategies are introduced in the study. By using a design of experiment, best strategies
are selected. Using this new algorithm gives better results in the test problems against
the other comparing algorithms.

Han et al. [19] hybridized ABCwith differential evolution (DE) to solve flow shop
scheduling problem with blocking. Using test instances, the solutions show that the
proposed methodology is superior to the compared algorithms for minimizing the
makespan criterion. Gong et al. [17] developed an ABC algorithm for blocking lot-
streaming flow shop scheduling problem with a multi-objective approach: solving
for makespan and earliness time simultaneously. The modification to the basic ABC
is justified using a variety of test problems, and the performances of the proposed
algorithm are evaluated and compared with four different algorithms on 18 test
subsets. The experimental results justify the significance of the approach. The results
also show that the proposed algorithm significantly outperforms the other algorithms
in terms of convergence and diversity of non-dominated solutions.

3.4 Bacterial Foraging Optimization Algorithm (BFOA)

As a nature-inspired optimization algorithm, BFOA is based on a of group foraging
strategy of a swarm of E. coli bacteria. To survive in a harsh environment, bacteria
tend to search for nutrients in a manner to maximize energy obtained per unit time.
Individual bacterium shares their knowledge between them by communicating with
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others by sending signals. A bacterium takes foraging decisions after evaluating two
previous factors. The process, in which a bacterium moves by taking small steps
while searching for better nutrients, is called chemo taxis, and key idea of BFOA is
mimicking chemotactic movement of virtual bacteria in the problem search space
[52]. Shivakumar and Amudha [72] developed enhanced bacterial foraging algo-
rithm for solving permutation flow shop scheduling problems with the objective of
makespan. They tested the algorithm with benchmark problems and reported that
the improvement of hybrid bacterial swarming algorithm. Zhao et al. [92] adopted
a chaotic local search based bacterial foraging optimization (CLSBFO) to minimize
makespan in permutation flow shop scheduling problem. In order to improve its
effectiveness, they used DE operator and the chaotic search operator into the chemo-
tactic step of the basic BFO. Also, they compared the results of CLSBFO with based
bacterial optimization and particle swarm optimization.

3.5 Bat Algorithm (BA)

The basics of bat algorithm are based on the echolocation or bio-sonar character-
istics of Microbats [86]. Microbats detect their preys, avoid obstacles and locate
their roosting places in the dark using a type of sonar called echolocation. In this
process, bats emit a very loud sound pulse and listen for its echo that bounces back
from the surrounding objects. Their pulses vary in properties and can be corre-
lated with their hunting strategies, depending on the species. Most bats use short,
frequency-modulated signals to sweep through about an octave, while others more
often use constant-frequency signals for echolocation [80]. Tosun and Marichelvam
[80] developed a hybrid bat algorithm to minimize the makespan in permutation flow
shop scheduling problems. They tested the hybrid algorithmwith Reeves benchmark
problems. They compared the performance solutions of the hybrid algorithm with
other metaheuristics algorithms. They conducted the statistical analysis to validate
the results. Xie et al. [83] presented a differential Lévy-flights bat algorithm to solve
the permutation flow shop with makespan objective function.

3.6 Cuckoo Search (CS)

CSA is developed from the obligate brood parasitic behavior of some cuckoo species
in combination with the Levy flight behavior of some birds and fruit flies in nature
[88]. The following three idealized rules are considered for describing the CS.

1. Cuckoo eggs correspond to the solution of the problem. Each cuckoo lays one
egg at a time and dumps its egg in a randomly chosen nest.

2. The best nests with high-quality eggs (solutions) will carry out to the next
generation.



com.ca@frederick.ac.cy

110 M. K. Marichelvam et al.

3. The egg laid by a cuckoo can be discovered by the host bird with a probability,
and a nest will then be built. This helps the chance of creating a new unknown
solution alternative to the problem, and the better solutions are replacing the
worse solutions.

Marichelvam [42] improved the basic CS algorithm by including NEH heuristic
to the initial solution generation step. Using benchmark problems for PFSP prob-
lem with makespan criterion, developed approach gives better results than the ACO
algorithm. Li and Yin [30] developed a CS approach to the PFSP. First, they used
largest-ranked-value rule to convert the continuous nature of the CS to discrete opti-
mization. To further improve the performance, NEH heuristic and a fast local search
techniques are integrated with the basic CS. Makespan criterion is used, and per-
formance comparison gives the superiority of the proposed approach. Dasgupta and
Das [10] proposed an inter-species cuckoo search (ISCS) algorithm for hybrid flow
shop scheduling (HFS) and permutation flow shop sequencing problems. Smallest
position value (SPV) heuristic [5] is used to convert the continuous nature of the
cuckoo search algorithm to discrete optimization. Both makespan and mean flow
time objectives are used. In general, proposed algorithm has better solution quality
against other metaheuristics given in the study. The proposed CS algorithm gives
better results than the rest. Wang et al. [82] developed a new cuckoo search (NCS)
algorithm for solving flow shop scheduling problems. They used four strategies. The
first strategywas changing continuous nature of the algorithm into discrete jobpermu-
tations using smallest position value (SPV) rule. The second strategy was to generate
initial solutions generated with high quality using NEH heuristic. The third strategy
was to modify generalized opposition-based learning to improve the convergence
speed. In the fourth strategy, local search was used to enhance the exploitation. They
tested NCS algorithm with the benchmark problems. They reported NCS algorithm
produced better results than standard Cuckoo search.

In Komaki et al. [26], two different CS algorithms are given. Three-stage assem-
bly flow shop scheduling problem based on makespan minimization is handled.
Both models are compared against SA, VNS and different dispatching rules. Wang
et al. [81] developed a CS algorithm and measure its performance with Taillard test
instances. In the approach, smallest position value (SPV) is preferred for changing
the continuous solutions to discrete variables. Like the other studies, heuristics is
also used to enhance the initial solution quality. To further improve the proposed
approach, generalized opposition-based learning and a local search strategy are uti-
lized. Results showed that performance obtained is better than the traditional CS and
other meta-heuristic algorithms selected for comparison. Sun andGu [75] hybridized
CS with the estimation of distribution algorithm (EDA). No-idle PFSP is handled
under total tardiness criterion. Like most of the previous studies, NEH heuristics
[42] is used to increase the efficiency of the initial solution. Some crossover and
local search-based strategies are also included in the hybrid model. Using bench-
mark problems, algorithm is compared against GA, CS and EDA, in which it gives
better results than each of them.
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3.7 Crow Search Algorithm (CSA)

CSA is a population-based nature-inspired algorithm which copies the behavior of
crow birds and their social interaction [3]. Living in group, crows are intelligent birds
which hide their foods in hiding places and also able to memorize their places and
retrieve the hidden food even after several months. Crows can do thievery by follow-
ing the other crows by watching their food’s hiding places and steal the hidden food.
When a crow feels that another one is following it, it moves to another place far away
from the food’s hiding place in order to confuse the thief crow. Flow shop scheduling
environment is analyzed by Marichelvam and Geetha [38]. Basic CSA is hybridized
with dispatching rules to improve the efficiency of the solutions. Minimizing the
sum of makespan and total flow time is the objective of the given study. Random test
instances are generated, and solutions are compared against other algorithms. In all
the situations, the proposed methodology gives better solutions.

3.8 Firefly Algorithm (FA)

FA is a swarm intelligent-based metaheuristics based on the characteristic behaviors
of fireflies. Fireflies use the flashing light for finding mates, attracting their potential
prey and protecting themselves from their predators. The swarm of fireflies will move
to brighter and more attractive locations by the flashing light intensity that associated
with the objective function of problem considered in order to obtain better optimal
solutions [89]. The development of FA is based on three rules:

(i) Artificial fireflies are assumed to be unisex so that gender is not an issue for
attraction.

(ii) Attractiveness is proportional to flashing brightness which decreases as the
distance from the other firefly increases due to the fact that the air absorbs
light. As the attractiveness increases, the brightest firefly becomes the most
attractive firefly in the swarm, to which it convinces neighbors moving toward.
In case of no brighter one, it freely moves any direction

(iii) The brightness of the flashing light can be considered as objective function of
a problem that needs to be optimized.

Sayadi et al. [67] proposed discrete firefly algorithm for minimizing themakespan
in permutation flow shop scheduling problems. They formulated the problem as a
mixed-integer programming. They compared the results of discrete firefly algorithm
with ant colony optimization algorithm and then reported that discrete firefly algo-
rithm produced better results when compared to the ant colony for some well-known
benchmark problems. Chakaravarthy et al. [8] compare firefly algorithm and artifi-
cial immune system algorithm for the lot-streaming flow shop scheduling problems.
Using test instances, they measured algorithms’ efficiency using makespan. Both
algorithms showed great performance but according to the study FA is better than
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other algorithms. Lo et al. [35] improved the performance of FA by using the logis-
tic map which shows a chaotic behavior for initializing the population. PFSP with
makespan criterion is solved, and performance of the chaos-based FA is compared
with basic FA, PSO and GA. Marichelvam et al. [36] solved multi-objective FSSP
with FA algorithm. Objective of the scheduling problem is the weighted sum of
makespan, mean flow time, mean tardiness and number of tardy jobs. In the study,
smallest position value is used to convert the continuous nature of the traditional FA
to discrete nature. Using randomly generated test problems, algorithm is compared
against SA, ACO, GA, CS and PSO. FA gives better results than the correspond-
ing metaheuristics. Marichelvam and Geetha [39] proposed a FA to solve flow shop
scheduling problem to minimize the total flow time. The basic FA is improved with
different heuristic approaches. Comparing its results against GA, ACO and SA, FA
has produced far better solutions.

3.9 Flower Pollination Algorithm (FPA)

FPA is a swarm intelligence-basedmetaheuristics proposed byYang [87]. Its essential
is behavior of flowers’ pollination. Basic idea behind the algorithm is

• Each flower is handled as an individual in a population
• Cross-pollination is conducted based on a probability of p ε [0, 1]. Here, cross-
pollination is based on the animals (like bees or butterflies) pollination among
different kinds of flowers using the Levy flight mode.

• Self-pollination, on the other hand, is the close distance pollination among the
same species of the flowers. In the algorithm, it has a probability of (1 − p) to be
conducted.

Qu et al. [54] improved the cross-pollination mechanism of the basic FPA with
hormone modulation mechanism and used this algorithm to solve the no-wait FSSP
under makespan. Comparing their approach against other metaheuristics from the
literature showed that proposed methodology gives better solutions against them.

3.10 Fruit Fly Optimization Algorithm (FFO)

The fruit fly optimization algorithm (FOA) mimics the food-finding behavior of the
fruit fly. The fruit fly is better to other species in sensing and perception, especially
in osphresis and vision. The osphresis organs of fruit flies can find all kinds of scents
floating in the air; it can even smell food source from more than 40 km away. Then,
after it gets close to the food location, it can also use its sensitive vision to find food
and the company’s flocking location and fly toward that direction too [50].

Marichelvam et al. [37] solved multi-objective FSSP with FFO algorithm. Objec-
tive of the scheduling problem is the weighted sum of makespan, mean flow time,
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earliness and tardiness. Authors include the constructive heuristics and a dispatching
rule to improve the solution quality of the basic FFO. Performance of the model
is compared with GA, ACO, SA, PSO and basic FFO. Proposed hybrid FFO gives
better results for each test instance. FA is a swarm intelligent-based metaheuristics
based on the characteristic behaviors of fireflies. Fireflies use the flashing light for
finding mates, attracting their potential prey and protecting themselves from their
predators. The swarm of fireflies will move to brighter and more attractive locations
by the flashing light intensity that associated with the objective function of problem
considered in order to obtain better optimal solutions. The development of FA is
based on three rules:

3.11 Gray Wolf Optimization (GWO) Algorithm

Graywolf optimization is a nature-based swarm intelligentmethodwhichmimics the
leadership hierarchy of wolves that are well known for their group hunting. In their
natural environment, gray wolfs tend to live in a pack. They have a strict social domi-
nant structure in which their leader is called alpha. The alpha is generally responsible
for decisionmaking. The orders of the dominant wolf should be followed by the pack.
The betas are subordinate wolves which help the alpha in decision making. The beta
is an advisor to alpha and discipliner for the pack. The lower-ranking gray wolf is
omega which has to submit all other dominant wolves. If a wolf is neither an alpha
or beta nor omega, then it is called delta. Delta wolves dominate omega and report to
alpha and beta [47]. Jeet [22] solved the two-machine flow shop scheduling problem
under makespan and idle time criteria. In the proposed multi-objective approach, the
processing time and setup times are based on fuzzy environment. Performance of
the proposed approach is compared against multi-objective GA, PSO and NSGA-II.
Better solutions are obtained with the new approach. Komaki and Kayvanfar [25]
solved the two-stage flow shop scheduling problem with release time for minimizing
themakespan. GWO algorithm is developed, and performance is measured. Also, the
effect of different dispatching rules on the problem sets is measured. Yang and Liu
[90] developed a hybrid multi-objective gray wolf optimization algorithm to solve
the fuzzy blocking flow shop scheduling problem.

3.12 Invasive Weed Optimization (IWO) Algorithm

Invasive weed optimization is a bio-inspired stochastic optimization algorithm that
basically simulates natural behavior of weeds in colonizing and finding suitable
place for growth and reproduction [43]. Some of the distinctive properties of IWO in
comparison with other evolutionary algorithms are the way of reproduction, spatial
dispersal and competitive exclusion [95]. Zhou et al. [95] proposed an IWOalgorithm
for PFSS problem under makespan. They compared their findings against PSO and
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hybrid GA, and the simulation results show that the best scheduling sequence can
be obtained effectively by IWO which showed a strong adaptive and robustness.
Sang and Pan [62] solved the FSSP with intermediate buffers under makespan. NEH
heuristic, an improved search mechanism and a local search strategy, is integrated
into the basic IWO. Comparing their results against other metaheuristics showed the
effectiveness of their methodology. Sang et al. [63] improved the IWO with NEH
heuristic and local search techniques for the no-wait lot-streaming FSSP using test
problems. Comparing their results against different metaheuristics from the literature
proved their algorithms efficiency. Sang et al. [64] developed a two-stage IWO for
distributed assembly PSFP with total flow time criterion. Both product permutations
and job sequences are optimized in the study. Heuristic-based initializing, job-based
and product-based local search strategies are used to have better solution quality by
the IWO. Solutions are compared against two different memetic algorithm-based
metaheuristics [29, 33]. Improved IWO gives better results against each comparing
algorithm.

Jafarzadeh et al. [20] designed a multi-objective IWO for no-wait two-stage flexi-
ble flow shop scheduling problem under makespan and average lateness time. First, a
Taguchi experiment is given to find the optimal control parameters. Three othermulti-
objective algorithms based on PSO, GA and evolutionary strategy are used to com-
pare the proposed model. Test results indicated the better performance of the multi-
objective IWO. Sang et al. [65] used IWO for the lot-streaming FSSPwith SDSTwith
makespan. NEH heuristic is used to increase the quality of the initial solutions, and
different local search and global search-based improvements are proposed. A com-
parative performance measurement is studied with using different well-performing
metaheuristics including randomly generated 280 test problems. The experimental
simulations show that the proposed IWO approach gives exceptionally better results
than the competing algorithms. In Shao et al. [70], a multi-objective IWO is used for
the blocking FSSP for simultaneously minimizing the makespan and total tardiness.
Using two different heuristics, quality of the initial population is improved, also to
further enhance the solution quality a reference line-based reproduction, a sliding
insertion-based spatial dispersal and local search strategies in included to basic IWO.
Comparing the performance against different metaheuristics from the literature indi-
cated that proposed approach produced better results. Shao et al. [68] improved IWO
using a random insertion-based searching approach and shuffle-based local search
strategy. Blocking flow FSSP with makespan is used to measure the efficiency of
the approach. Shao et al. [69] also proposed the IWO to solve the blocking flow
shop scheduling problems with multiple objectives. Sang et al. [66] presented three
different IWO algorithms for distributed assembly PFSP with total flow time cri-
terion. Different neighborhood operators and local search strategies are integrated
into the basic IWO. In those three IWO-based methodologies, the one with hybrid
search operators gives better solution quality. Comparing it to other metaheuristics
also confirms its performance superiority.
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3.13 Migrating Birds Optimization (MBO) Algorithm

Duman et al. [13] propose a new nature-inspired metaheuristics algorithm technique
based on the V flight formation of the migrating birds which is proven to be an effec-
tive formation in energy saving.Algorithm is startedwith initial solutions.Afterward,
these solutions are tried to improve on each step. The MBO uses a neighborhood
structure to improve solutions. Also, it has a benefit mechanism that unused neighbor
solutions shared with other solutions. Further, the leader bird is replaced with fol-
lowing bird. This is applied to left side of the flock firstly. The leader bird is gone to
end of left side, and following bird is assigned as new leader. The flock is continued
same formation as far as flapping parameter. Then, the leader bird is replaced with
right side of the flock. Gao et al. [16] used MBO for solving the no-wait flow shop
scheduling with total flow time criterion. To improve the efficiency of the algorithm,
three heuristics are used for population initialization, and an effective neighborhood
structure is integrated. Proposed algorithm gives better solutions against some well-
known metaheuristics used for comparison. Tongur and Ülker [79] solved flow shop
sequencing problem for minimizing the makespan. Using some basic benchmark
problems, performance of the algorithm is measured. Meng et al. [44] designed an
enhancedMBO for the lot-streaming flow shop scheduling problemwith setup times,
in which job-splitting and job scheduling are considered simultaneously. The objec-
tive of the study is to minimize the makespan. In the study, a two-stage vector is
employed to represent solutions in the swarm. Also, a special neighbor structure is
designed to further improve the local search. Finally, to prevent to be stuck around
to local minimum, a new solution update scheme is included. Comparing the results
against different metaheuristics showed that the enhanced MBO has better solution
quality.

Benkalai et al. [6] proposed two different MBO algorithms for the permutation
flow shop schedulingwith SDSTundermakespan. First one is the basicMBO, and the
second is improvedMBO based on or-opt neighborhood approach and also using dif-
ferent heuristics for the initial solutions. The results showed that the improved MBO
is superior to the basic one. Meng et al. [45] improved the basic MBO for solving the
lot-streaming FSSP. In their approach, lot-splitting and job scheduling are optimized
simultaneously. Aim of the study is minimizing the makespan. To improve the basic
MBO, a harmony search-based schema is used to develop neighborhood solutions.
Another improvement is based on a leaping mechanism to prevent the algorithm
trapped in a local optimum. Different metaheuristics from the literature are used to
compare the proposed approach’s performance. Sioud and Gagne [73] proposed both
a heuristic and MBO-based solution approach for PFSP with sequence-dependent
setup times (SDST) under makespan.MBO is improved using tabu list, a local search
procedure and a probabilistic leader bird selection strategy. Both the new heuristic
and the improved MBO give better results than the comparing algorithms. Han et al.
[18] improved the basic MBO algorithm to solve the blocking lot-streaming flow
shop problem under makespan. Their proposed algorithm uses multiple neighbor-
hoods based on insert and swap operators, estimation of distribution algorithm (EDA)
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and also a local search based on the insert neighborhood strategy. They compared
their results with the existing discrete invasive weed optimization, EDA and MBO
algorithms based on different benchmark problems. Results showed the superiority
of the given algorithm.

3.14 Monkey Search Algorithm

Monkey search algorithm is emerged from the idea of the monkeys and their
mountain-climbing process. In the algorithm, the climb process used is a kind of
recursive optimization technique. The proposed climbing process is used for improv-
ing objective function value (or position of a monkey). During the climbing process,
each monkey arrives its own mountain top. Then, each monkey will start looking for
other higher points than its current position. If a higher mountain is found (a better
solution to the problem), the monkey could jump there by using its eyesight prop-
erty. The eyesight of a monkey is known as the maximum distance that a monkey
could watch. The current position of a monkey is updated. In the third step, the new
searching domains can be found by the monkeys based on their current positions as a
starting point. This stage is referred as somersault process and will yield a new posi-
tion for the monkeys [93]. Marichelvam et al. [41] developed hybrid monkey search
algorithm for solving the flow shop scheduling problem with the objective of min-
imizing makespan and total flow time. They tested the algorithm with benchmark
problems. They reported hybrid monkey search algorithm produced better results
when compared to other methods.

3.15 Particle Swarm Optimization (PSO)

PSO was developed by Kennedy and Eberhart [24], inspired by the behavior of
social living organisms in groups, such as group of birds and fish or ant colonies.
This algorithm emulates the interaction betweenmembers to share information. PSO
performs its search of the optimal solution through agents, known as particles, whose
trajectories are adjusted by a stochastic and a deterministic component. Each particle
is influenced by its ‘best’ achieved position and the group ‘best’ position but tends
to move randomly. A particle is defined by its position vector and its velocity vector.
Position of each particle represents its fitness function value. For every iteration, each
particle changes its position according to the newvelocity based on the history of both
its own current position and best location (fitness) with those of the swarmwith some
randomperturbation.Rahimi-Vahed andMirghorbani [56] developedmulti-objective
particle swarm optimization for minimizing the weighted mean completion time and
weightedmean tardiness in flow shop scheduling. They concluded that for large-sized
problem, the proposed PSO performed better when compared to GA. Tasgetiren et al.
[77] proposed PSO algorithm to solve permutation flow shop sequencing problem
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with the objective of makespan and total flow time. They applied smallest position
value (SPV) rule to PSO algorithm to both Watson’s benchmarks for makespan and
Taillard benchmark instances for total flow time. They reported that the performance
of proposed method produced better solution for most of the sequencing problems.

Jarboui et al. [21] applied Combinatorial Particle Swam Optimization (CPSO)
for solving permutation flow shop problem with the objective of minimizing the
makespan and the total flow time. The authors compare the performance of CPSO to
the smallest position value of PSO (PSOspv), GA and Hybrid CPSO (H-CPSO) for
makespan. Similarly, they compare the performance of H-CPSO algorithm to PACO,
M-MMAS and Variable Neighborhood Search PSO (PSOVNS) for total flow time.
Finally, they report the performance of H-CPSO better for total time up to 20 jobs
and machine varying from 5 to 20. PSOVNS produces better result for jobs 50, and
machine varies from 5 to 20. Lian et al. [31] developed novel particle swarm opti-
mization (NPSO) algorithm to solve permutation flow shop scheduling problemwith
the objective of minimizing makespan. They tested algorithm with Taillard bench-
mark problems. They compared the results of NPSOwith standard genetic algorithm,
and then, they concluded NPSO performed well. Chen et al. [9] proposed revised
discrete particle swarm optimization (RDPSO) to solve the permutation flow shop
scheduling problem with the objective of minimizing the makespan. They developed
a new filtered local search to filter the solution regions and guide the search to new
solution regions in order to avoid premature convergence. The RDPSO algorithm
was tested with the benchmark problem sets. They reported RDPSO algorithm per-
formed better than existing PSO algorithms. Lian et al. [32] proposed an improved
PSO based on crossover andmutation operators for the FSSP to minimize makespan.
Solutions compared against GA show that the improved methodology has a better
performance on the test instances.

3.16 Rhinoceros Search Algorithm (RSA)

The RSA is based on the daily life routines of rhinoceros’ groups foraging and other
natural activities. Global exploration and local intensification of a search algorithm is
represented with different genders in a group of rhinoceros. Deb et al. [11] proposed
some assumptions for the algorithm to work efficiently:

• All rhinoceros are doing Levy flight in their search procedure.
• Male rhinoceros have bounce mechanism, while female rhinoceros do not have
this property.

• In each iteration, with a probability of 0.05, any rhinoceros would die. Therefore,
a reborn mechanism is developed to ensure the stability of the population.
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Deb et al. [11] proposed a novel approach based on the rhinoceros’ natural behav-
iors. PFSPwithmakespan and total flow time are usedwith different benchmark prob-
lems are solved with RSA. Algorithm is compared against PSO. For makespan cri-
terion, RSA gives better solution than the PSO, whereas for total flow time criterion,
RSA becomes better with the increasing problem dimension.

3.17 Sheep Flock Heredity Algorithm (SFHA)

Basic idea of the SFHA is the behaviors of sheep within two different flocks. Nor-
mally, sheep are living together with their own flock under the supervision of their
shepherds. Based on this closed society, the genetic heritage can only occur inside
the flock, in other words, some special attributes in one flock develop only within
this flock by heredity, and the sheep with high fitness properties (objective function
of a problem) to their environment breed in the flock [48]. When two different sheep
flocks were encountered and mixed together, shepherd of the corresponding flocks
run into the mixed flock, and try to separate their own sheep as before. However,
shepherds cannot distinguish between their original sheep they owned because of the
same appearance of each sheep. Therefore, it becomes possible that several sheep
from one of the flocks can inevitably mix with the other flocks. This random occur-
rence can enhance property of each flock. The characteristics of the sheep in the
neighboring flocks can be inherent to the sheep in other flocks with this process.
After each flock is separated in the field, the flock of the sheep having better fitness
characteristics to the field environment breeds most (improves the chance of having
a better solution quality) [60]. Anandaraman [2] proposed an improved sheep flock
heredity algorithm (ISFHA) to solve the job shop and flow shop scheduling problems.
Using different benchmark problems, makespan criterion is used for performance
measurement. ISFHA shows better results in both problem types. Chakaravarthy
et al. [7] proposed a SFHA and ABC algorithm for the lot-streaming flow shop prob-
lem under makespan and total time criteria. They have improved the basic SFHA
using pairwise mutation process and a robust-replace heuristic for the neighborhood
search process. Both algorithms are compared against PSO and DEA. It is given
that improved SFHA gives better quality results for makespan and total flow time,
compared with ABC. Chakaravarthy et al. [7] compared an improved SFHA against
ABC algorithm for lot streaming in m-machine flow shop scheduling. Two differ-
ent objectives as total flow time and makespan are used in the study. To improve
the basic SFHA, a single mutation process is introduced instead of pairwise muta-
tion process, and robust-replace heuristic is used to enrich the neighborhood search
process. Proposed approach showed better results than the ABC algorithm.
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3.18 Shuffled Frog Leaping Algorithm (SFLA)

Inspired by the leaping process of frog groups in a swamp, the swamp has a number of
stones (possible solutions of a problem) at discrete locations. Each frog wants to find
the best stone (the one with the maximum amount of food) with their leaping ability.
As social beings, the frogs can allow to communicate with each other so that they can
improve their memes (a unit of cultural evolution) using another frogs’ information.
Improvement in ameme results changing an individual frog’s position to be optimum
by altering the leaping steps of each frog. In the proposed approach, the changing of
a leaping step is only allowed to be a discrete value by correspondence with the frogs
and their discrete positions. To improve the search quality, it is required that frogs
with better positions contribute more to the development of new ideas than frogs
with poor positions [14]. Pan et al. [49] used SFLA for solving the lot-streaming
flow shop scheduling problem under makespan criterion. Two different situations
known as no-idling and idling cases are used. To have a better solution, quality NEH
heuristic is used for the initialization schema, and a local search strategy is included
to improve the algorithm’s efficiency. In both problem types, proposed algorithm
shows better solution quality. Rahimi-Vahed andMirzaei [55] solved multi-objective
(weighted mean completion time and weighted mean tardiness) PFSS problem. A
multi-objective SFLA is proposed, and its performance is compared against other
three multi-objective metaheuristics based on GA. The computational results show
that the proposed SFLA performs better than the genetic algorithms, especially for
the large-sized problems.

Pan et al. [51] converted the basic SFLA to solve the multi-objective no-wait flow
shop scheduling in which makespan, maximum tardiness and total flow time are
the criteria used. A NEH-based initialization, two-point crossover-based procedure
and a local search techniques are combined to improve the basic algorithm. Better
solutions are gained against the comparing metaheuristics. Lei and Guo [28] used
SFLA for the HFSP with two agents. The selected objective is the total tardiness of
the both agents. Random test instances are generated, and the performance of the
proposed approach is measured against GA and SA. SFLA gives better solutions
quality against the selected algorithms. In Lei and Tan [27], order acceptance and
scheduling problem are considered in a flow shop where the objective is to decide
on the orders to accept and then schedule the accepted orders in order to maximize
total net revenue. A SFLA approach based on tournament selection is developed for
the problem. Using randomly generated test instances, algorithm’s performance is
compared against ABC and SA. It is given that the proposed SFLA performs better
than the ABC and SA.
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3.19 Water Wave Optimization (WWO) Algorithm

WWO method is inspired by shallow water wave models borrows ideas from wave
motions controlled by the wave-current-bottom interactions for solving optimization
problems. Wave propagation, breaking and refraction phase are the three steps of the
algorithm. Each of the alternative solution is represented as a wave with height and
wave length. In wave propagation, the wave is propagated to a random position. If it
reached to a lower sea depth (a better fitness value), it breaks into solitarywaveswhich
are formed in the breaking phase. This phase is the exploitation step of the algorithm
by generating random solitary waves around the current best position. On the other
hand, in refraction phase, algorithm searches for any other best solutions to avoid
from the local optimal [91, 94]. In Shao et al. [70], n-jobm-machines blocking FSSP
with SDST is considered. Both heuristic and WWO-based metaheuristics solution
techniques are given in the study. Makespan is the objective function used, perfor-
mance of the proposed heuristics is compared against 14 heuristics, and metaheuris-
tics approach is compared against 23 different metaheuristics from the literature.
Statistical analysis showed that the both solution techniques developed gives better
solution quality against the comparing algorithms. Shao et al. [71] developed amulti-
objective WWO algorithm for the multi-objective blocking FSSP to simultaneously
minimize the makespan and total flow time. Basic WWO is redesigned to cope with
a multi-objective problem. These improvements are a decomposition-based initial-
izing strategy, a ranking-based propagation operator for solution improvement and
some local search techniques. Performance of the algorithm is evaluated against 14
differentmetaheuristicswhich showed that themulti-objective approach outperforms
each of them.

3.20 Whale Optimization Algorithm (WOA)

WOA is inspired by hunting mechanism humpback whales. Algorithm consists
three phases: encircling prey (solution initializing), bubble-net attacking method
(exploitation phase) and search for prey (exploration phase) [46].

Abdel-Basset et al. [1] proposed a WOA hybridized with a local search strategy
for solving PFSS problems with makespan. Different benchmark instances are used
to evaluate the performance of the proposed algorithm.

4 Future Direction of Research

From the above literature review papers, it is evident that a wide variety of flow
shop scheduling problems was solved by different objective functions. However,
there is a wide scope for expanding this research in several ways. First, most of the



com.ca@frederick.ac.cy

5 Flow Shop Scheduling By Nature-Inspired Algorithms 121

researchers dealt with only theoretical problems by considering the flow benchmark
problem instances. It would be interesting to consider the scheduling problems of
real industries and solve them by these algorithms. As the industries ought to deliver
their products in time, this would be useful to the companies. The second important
development of this research is to apply the above nature-inspired algorithms to
solve multi-objective and many objective scheduling problems. As of now, most of
the researchers considered only single objective function only. The third scopemaybe
applying these nature-inspired algorithms to solve the flow shop scheduling problems
with uncertainties. Parameter optimization would be other interesting scope of this
research. As the performance of the nature-inspired algorithms would depend on
the parameters, optimization of these parameters is an important one. Hybridization
of the proposed algorithms with other suitable algorithms to obtain the optimal or
near-optimal solutions with less computational time is another vital scope of this
research work.

5 Conclusions

In this chapter, a comprehensive review is presented to focus the nature-inspired
algorithms proposed to solve the flow shop scheduling problems which was devel-
oped during 1950s. The algorithms and their variants are discussed in detail in this
study. The future scope of the research on the nature-inspired algorithms is also
addressed. It is observed that awide variety of nature-inspired algorithms is addressed
in the literature. Though researchers have made many diversifications in the problem
settings, they made numerous assumptions to simplify the problems. However, in
real production scheduling problems, one cannot make such assumptions. Another
important conclusion from the current study is that most of the researchers used
some heuristics and or dispatching rules to generate some of the initial solutions
to obtain the enhanced results. Also, they used the smallest position value rule to
apply the algorithms to solve the discrete scheduling problems. Taillard’s bench-
mark problems were widely addressed in the literature to validate the performance
of the proposed algorithms. Very few researchers provided the computational time
comparison. Though excellent results were obtained by some of the algorithms, it
cannot be concluded that one specific algorithm is better than other algorithms as
the algorithms depend on randomness. Hence, the research can be extended in many
directions as discussed above.
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Chapter 6
Mobile Robot Path Planning Using
a Flower Pollination Algorithm-Based
Approach

Atul Mishra and Sankha Deb

1 Introduction

In today’s era of modern robotics, mobile robots have been made as an intelligent
vehicle which can perceive their work environment using modern sensors. These
sensors can be used to provide the position and orientation and other data of the
robot, which can be used to propose the path efficiently. From the sensor’s data,
the robot controller should be able to generate a safe and feasible path if it has to
move from point A to point B. These sensors help make the robots autonomous
which are nowadays widely used in several fields such as agriculture, manufacturing
industries and transport. These mobile robots are equipped with several capabilities
like perception, location, planning and navigation. Figure 1 displays the flow chart
for themobile robot navigation. Here, an attempt has beenmade to optimally plan the
safe and feasible path for the mobile robot using a soft computing-based approach.
In this problem, the robot has to navigate that path starting from point A (start point)
to point B (end point) and also avoid the obstacles. These obstacles, for example, in a
typical environment, could bemachines, parts, pillar, etc. Several criteria like energy,
time, distance, safety, etc. can be considered to make the path optimal [23]. Robot
path planning problem can be categories mainly into two classes, local path planning
and global path planning. The global path planning deals with the generation of a path
when the working environment is static, and on the other hand, the local planning
deals with the generation of a dynamic path considering the path obtained by the
global path and the data obtained by the sensors.

From the literature study, it is learnt that the path planning approaches have
been categorised into three, namely deliberative approaches, reactive approaches and
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Fig. 1 Mobile robot navigation flow chart [46]

hybrid approaches. The deliberative approach for controlling the robot is computa-
tionally expensive as it involves the planning considering symbolic representations
andworldmodels.On the other hand, reactive control approach, as the name suggests,
uses various sensors to perform actions and usually does not require intervening rea-
soning [20]. The mix of the above-mentioned approaches has also been developed
previously where the control is both deliberative and reactive. The controller’s part,
which takes care of the deliberative approach, concerns with the high-level issues
on a longer time scale, e.g. global path planning, while the part of the controller,
which takes care of reactive approach, concerns with low-level control issues, e.g.
local collision avoidance. These two parts of the controllers are often connected with
the third component of the hybrid control system. Though the use of hybrid control
in the mobile robot navigation system is advantageous, the implementation of this
control makes the system quite complex and challenging. It is also worth noting that
the reactive-based approaches are robust, hence, common, and have been used to
improve the classical approaches [46].

Several approaches like potential field-based approach, probabilistic roadmap
approach, grid-based approach, virtual impedance-based approach, divide-and-
conquer-based approach, cell decomposition, etc. fall under the class of classic
approaches.As per thework byGemeinder andGerke [21], it is learnt that, nowadays,
several soft computing-based approaches from the domain of artificial intelligence
have also been used to determine the collision-free trajectories in robot working envi-
ronments. Example of few soft computing-based algorithms that have been applied
in this field is neural network, particle swarm optimisation-based algorithms, fire-
fly algorithm-based algorithms, genetic algorithm-based algorithms, cuckoo search
based, artificial bee colony-based algorithms, etc.
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1.1 Multi-robot Path Planning Approach

The case of multi-robot path planning becomes more interesting, where the robots
move from their respective start points to their respective endpoints andwhilemoving
between these points, they have to avoid the obstacles as well as avoid colliding with
each other. Hence, the coordination among the robots also becomes an important
consideration, which should work robustly in real time. A simple idea to solve the
multi-robot path planning problem is to embed every possibility of all the robots as
a consolidated problem which can be later optimised using an evolutionary method.
It is to be noted that those robots, which have their optimal robots away from the
collision, do not affect each other [29]. Algorithms developed by Potter and de Jong
[47, 48] based on coevolution, Sánchez-Ante andLatombe [57] andKavraki et al. [32]
are considered to be good choices for path planning of multi-robot. However, these
algorithmswere computationally richwhich led to the development of other reactive-
based approaches. Some of the work, in this field, include Khatib [34], Pradhan et al.
[49], Baxter et al. [6], Selekwa et al. [62], Kala [29]. Various algorithms based on soft
computing approaches have also been developed to solve this problem as discussed
by Chakraborty et al. [11], Bhattacharjee et al. [8], Rakshit et al. [52], Kala [28, 29],
Das et al. [15, 16], Abbas and Abdulsaheb [2], Faridi et al. [19], Thabit andMohades
[65] and Alotaibi and Al-Rawi [4].

1.2 Soft Computing-Based Approaches

As mentioned above, several researchers have applied various soft computing algo-
rithms to not only improve the performance of the existing algorithms but also con-
sider various cases in different environments such as aerial, underwater, land with
various terrains and hazardous and industrial environments. The next sections give
brief details of the algorithms used for robot path planning problem.

1.2.1 Genetic Algorithm

Genetic algorithm (GA)was proposedbyHolland [26],whichworks on the biological
evolution and genetics principle. Three main operators, used in GA, are the selection
(to select the quality individuals out of the mating pool), the crossover (to mix the
properties of parent individuals to generate offspring) and the mutation (to mutate
the individuals so that they do not fall into local minima/maxima). Flow chart of the
basic GA is given in Fig. 2. It has widely been used for both single and multiple
robot path planning problems as found by Shing et al. [59], Xiao et al. [68], Kang
et al. [30], Shi et al. [58], Kala [29], Liu et al. [39], Yang et al. [70], Hong et al.
[25], Jianjum et al. [27], Patle et al. [45]. To tackle the problems of infeasible path
generation, variable path length, etc., GA operators have been modified. Various
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Fig. 2 Flow chart of the basic genetic algorithm

crossovers like partially mapped crossover (PMX), cycle crossover, order crossover,
same point crossover (SP) and same adjacency crossover have been developed that
contain different logics depending upon the specific problem.

1.2.2 Firefly Algorithm

Yang [71] had proposed the firefly algorithm (FA) which is motivated by flashing
characteristics of fireflies. The flashes by the fireflies are used to appeal the coupling
mate (used for the communication) and to draw the potential prey. It also serves as a
mechanism for the protective warning for the fireflies. The pseudocode for the basic
firefly algorithm is given in Fig. 3. Due to its success in various engineering fields, FA
has also been used in mobile robot path planning. The application of FAwas found in
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Fig. 3 Pseudocode for the basic firefly algorithm [71]

the papers by Hidalgo-Paniagua et al. [24], Brand et al. [9], Sutantyon and Levi [61],
Christensen et al. [12] andWang et al. [67]. A system for mobile robot path planning
was developed in the presence of stationary objects (obstacles) by Hidalgo-Paniagua
et al. [24] considering the length of the path, smoothness and the safety criteria. A
single mobile robot was considered in the work by Brand et al. [9] in a simulated
environment. The FA has also been applied for robot planning in underwater by
Sutantyon and Levi [60], Sutantyon and Levi [61] and Wang et al. [67] for aerial
navigation. There have also been attempts to fuse FA with other approaches such as
FA-ABC hybrid approach [1], FA-Q learning approach [55], and FA-vision-based
approach [43].

1.2.3 Particle Swarm Optimisation

Particle swarm optimisation (PSO) had been innovated by Kennedy and Eberhart
[33] which takes inspiration from the social behavioural patterns of organisms that
live and intercommunicate within huge groups. The algorithm includes swarming
behaviours observed in schools of fish, flocks of birds or swarms of bees and has
also been observed in human social behaviour. The ‘swarm intelligence’ paradigm
has developed by taking inspiration from these behaviours. The pseudocode for the
basic PSO algorithm is given in Fig. 4. Few of the robot navigation planning works
include Atyabi et al. [5], Tang and Eberhand [63], Xuan et al. [69], Couceiro et al.
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Fig. 4 Pseudocode for the basic PSO algorithm [71]

[14], Tang et al. [64] and Li et al. [37]. The navigational challenges embedded in
an unknown environment are addressed in the work by Tang and Eberhand [63]. As
mentioned before about the need of stable convergence for the soft computing-based
algorithms, Xuan et al. [69] developed an algorithm by hybridizing the PSO with
another algorithm called as mesh adaptive direct search. To address the cooperative
motion path planning in complicated environments, Tang et al. [64] developed PSO
with multi-body system dynamics that considered fault tolerance. For the problem
of multi-robot path planning, Couceiro et al. [14] combined the PSO with DPSO to
avoid the collision and issues related to mutual communication. Li et al. [37] used
a self-adaptive PSO for robot navigation in challenging and complex environment
while simultaneously considering several constraints.

1.2.4 Ant Colony Optimisation

The ant colony optimisation (ACO) algorithm had been presented by Dorigo [17]
which follows the imitation of cooperation of ants when searching for food. While
making their paths from nest to food source, a chemical substance which is known as
‘pheromone’ is deposited by these ants, which helps them communicate with other
ants andmake their path shortest over the time. The algorithm can easily be modelled
on a graph, hence can be applied in various areas especially combinatorically explo-
sive problems, and however, the generation of the graph is difficult, which further
makes it computationally expensive. Some of the robot navigation planning work
using ACO are: Liu et al. [41], Guan-Zheng et al. [22], Purian et al. [50], Castillo
et al. [10], Liu et al. [40], Rajput and Kumari [54] and Kumar et al. [35]. In the work
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by Liu et al. [39], a collision avoidance strategy was employed to solve the multi-
robot navigation in the presence of stationary obstacles. Another interesting work
was done by Guan-Zheng et al. [22] where the ACO algorithm was proposed to plan
path in real time for the mobile robots. In this work, several advantages like conver-
gence speed, computational time, etc., of the proposed ACO were found which were
better than the GA-based approach. For unknown dynamic environments, Purian
and Sadeghian [50] proposed the ACO that could select and optimise the fuzzy rules.
Another hybridised version of ACO with fuzzy was demonstrated by Castillo et al.
[10] for the path planning problem in the presence of stationary objects. Liu et al.
[40] detailed the issues present in the ACO and proposed the improvement of the
ACO by integrating the pheromone diffusion and local optimisation strategy. This
work was further improved in terms of faster convergence by Kumar et al. [35] by
further updating the strategies.

1.2.5 Cuckoo Search Algorithm

Cuckoo search (CS) algorithm had been proposed in the work by Yang and Deb
[73] which imitates the egg-laying behaviour of cuckoos in the nests of other
species. In the paper by Yang and Deb [73], few rules were laid down that
mimic this phenomenon into the proposed algorithm. This algorithm has suc-
cessfully been used in various engineering problems and has been found to give
satisfactory results. The pseudocode for basic cuckoo search algorithm is shown
in Fig. 5. List of the work where the problem of mobile robot path planning was

Fig. 5 Pseudocode for the basic cuckoo search algorithm [71]
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solved using CS algorithms was: Wang et al. [66], Mohanty and Parhi [44]. In the
work by Wang et al. [66], a hybrid approach by combining the differential evolution
with cuckoo search was developed which worked for unknown environments and
was found to be having better convergence speed in the aerial navigation system.
While in the work by Mohanty and Parhi [44], it was found that the CS algorithm
worked when combined with other navigation algorithms, especially in the case of
complex and partially unknown environments. This was achieved by hybridizing the
CS algorithm with adaptive neuro-fuzzy inference system (ANFIS).

1.2.6 Artificial Bee Colony Optimisation

Artificial bee colony algorithm (ABC) had been presented by Karaboga [31], where
the bees present within a colony were categorised into the employed group, forager
bees group, onlooker/observer bees and scouts group. For each food source, there is
only one employed bee, and the number of food sources is assumed to be equal to the
number of employed bees. The employed bee of a discarded food source is forced to
become a scout bee who then starts to search for new food sources arbitrarily. The
employed bees pass the information to the onlooker bees so that the onlooker bees
can start searching for a new food source. As opposed to the honeybee algorithm,
where there are two groups of bees (the observer bees and the forager bees), bees of
ABC are more specialised. The intake efficiency, at a particular food source, can be
calculated by the following equation

Intake efficiency = N/T,

where

N the amount of nectar present and
T the amount of time spent at food site.

At a given number of explorations, if a food source is foundwithout improvement,
then the food source is vacated, and the bee starts moving randomly to further explore
new locations, from the present location. ABC algorithm has been used in various
areas such as combinatorial optimisation, job scheduling and engineering design
optimisation in the previous few years. Some of the robot path planning work where
the ABC algorithm has been applied are: Saffari and Mahjoob [56], Ma et al. [42],
Bhattacharjee et al. [8], Contreras-Cruz [13], Liang et al. [38] and Bhagade and
Puranik [7].

In the work by Saffari andMahjoob [56], ABC algorithmwas developed when the
obstacles were present in static condition. Ma et al. [42] demonstrated a hybridised
version of ABC algorithm which could successfully plan the robot path in the real
time for the dynamic environments. In order to tackle the problem of multiple mobile
robot navigation, Bhattacharjee et al. [8] developed an ABC algorithm which could
successfully work in stationary environments. The work demonstrated by Contreras-
Cruz [13] showed the working of an ABC algorithm for the stationary environment
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where the local search in addition to the evolutionary algorithm was used to get the
optimal path. The ABC algorithm has also been applied in underwater navigation,
aerial navigation and also in problems related to vehicle routine.

1.3 Challenges in the Application of Artificial Intelligent
Approaches

The general problem in robot navigation is searching for the best path out of several
possible paths so that a single or multiple robot(s) moves efficiently and safely in the
given environment with the least time or energy incurred. However, the problem gets
further challenging as the search space becomes bigger, resulting in a huge number
of feasible paths. This problem is also present in case of soft computing based on
artificial intelligent approaches. But due to their population-based search strategy,
they are less affected and can yield the expected result in polynomial time [74]. In
addition to general challenges like convergence speed, run time and parameter tun-
ing of the algorithm, another challenge with soft computing-based algorithms is to
generate a methodology to cope up with different numbers of intermediate points
in a path through which the robot has to pass. A fixed-length solution in path plan-
ning does not work for a complex environment and can increase the time required
to evolve a solution because of its inefficiency [53]. Researchers have innovated dif-
ferent modelling scheme to cope up with this issue, such as in the work by Elshamli
et al. [18] discussed a methodology to represent the variable path length. Qiongbing
and Lixin [51] studied the variable-length chromosome of their GA used by previ-
ous researchers and then devised a new crossover named as ‘Same Adjacency’ to
take care of variable-length issue. In the work by Lamini et al. [36], they used the
concept of variable-length chromosome, and accordingly, a novel crossover oper-
ator has also been proposed. While developing a soft computing-based algorithm,
to solve the problem of mobile robot navigation, researchers have to consider the
model of the robot’s working environment, especially complex shaped obstacles
(i.e. irregular shaped objects), consideration of the physical size of the robot (which,
mostly, is assumed to be a point/negligible volume when planning), no repeated
points/coordinates in the generated optimal path, generation of infeasible path dur-
ing the working of the algorithm, etc. The last two challenges mentioned can be
overcome by applying the sound repair strategies for the generated solutions.

In this work, a global path planning approach for the mobile robots have been
developedwhere information about the robot’s surrounding is known beforehand and
the path is planned before the robot starts the navigation. An FPA-based approach has
been proposed here to generate the feasible as well as optimal path for the mobile
robot. The next section describes the basic principle of the FPA, followed by the
proposed approach for path planning, results and discussions and finally conclusions.
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2 Flower Pollination Algorithm

2.1 Basic Principle

This section briefs the working of flower pollination algorithm (FPA) or flower algo-
rithm, developed by Yang [72]. It is known that the flowering plants have been
evolving through the process of evolution for over 125 million years. A flower per-
forms the reproduction via pollination. The transfer of pollens causes this pollination
process which is transferred by the pollinators such as birds, insects and bat. There
could be two types of pollination phenomenon in nature, namely abiotic and biotic.
Almost 90% of the pollination happens in the form of biotic pollination in the flower-
ing plants, where pollens are transferred mainly by animals and insects. On the other
hand, almost 10% of the pollination is performed by the abiotic pollination which
requires no pollinators. The abiotic pollination is performed by wind and diffusion
in water, and a good example of it is grass. Another good pollinator is honeybees. A
mechanism known as flower constancy provides evolutionary advantages as it can
increase the transfer of flower pollen to the same plants and thus maximising the
reproduction and also the survival of the same flower species.

In addition to the above, pollination has also been categorised into the self-
pollination and the cross-pollination. The cross-pollination, also known as allogamy,
is a form of pollination that occurs from the pollen of a flower of a different plant, and
on the other hand, self-pollination is the pollination of one flower, from the pollen of
the same flower or different flowers of the same plant. It is known that the cross and
biotic pollination usually happens at long distances due to pollinators, namely bats,
birds and bees, which fly for a long distance considering it as the global pollination.
The birds and bees behave like the Levy flight behaviour, where their jump or fly
distance steps follow the Levy distribution. Yang [72] has laid the following rules to
model the flower pollination algorithm:

1. Biotic-cross-pollination is the global pollination where the pollinators carry the
pollens using Levy flights.

2. Local pollination is considered to be a form of abiotic-self-pollination.
3. Flower constancy is assumed to be the reproduction probability.
4. To control the amount of pollination between local and global, a switch

probability is proposed.

The global pollination can be represented mathematically as Eq. 1.

xt+1
i = xti + γ L

(
g∗ − xti

)
(1)

where

xti pollen i or individual vector xi at iteration t,
g∗ the current best individual present in the population at the iteration t,
γ a scaling factor,
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L a step-size parameter based on Levy flights that measures the pollination
strength.

This L is calculated using the Levy distribution function as shown in Eq. 2.

L = λ�(λ) sin(πλ/2)

π
∗ 1

s1+λ
(2)

The gamma function �, given in the above equation, depends on λ. For λ = 1.5, �
= 0.88 [3].

The local pollination is mathematically written as Eq. (3).

xt+1
i = xti + ∈ (

xtj − xtk
)

(3)

where

xti pollen i or individual vector xi at iteration t,
∈ a random number/vector from uniform distribution within 0–1,
xti pollen j or individual vector xj at iteration t,
xti pollen k or individual vector xk at iteration t.

The pseudocode for the basic FPA is given in Fig. 6.

Fig. 6 Pseudocode of the basic flower pollination algorithm [72]
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Fig. 7 Environment showing a feasible path for robot navigation

2.2 Proposed Approach for Robot Path Planning

The following sections detail the representation scheme, initial population genera-
tion, global pollination rule, local pollination rule and the fitness function used in the
flower pollination algorithm.

2.2.1 Representation Scheme

For an algorithm to successfully work and yield the optimal results, it is very impor-
tant to model the problem’s data in which the information related to the problem is
represented. It also affects the efficiency of the algorithm. In the case of path plan-
ning of mobile robots, previous researchers have used different modelling schemes
to represent the information. In the present work, the working environment where the
robot path has to be determined is divided into the small-sized square cell. A sample
of this is shown in Fig. 7. For the recognition of each cell and location of obstacles
and the robots, each cell has been recognised using an index number attached to it
as shown in Fig. 8 (with one-level padding) and one of the possible paths.

2.2.2 Population Generation

Most of the soft computing algorithm work on the principle of the population-based
approach, where several population candidates are generated followed by a few
operators that are used intelligently to yield better population individuals. Several
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Fig. 8 Map showing the
start point (point number 1)
and end point (25), the static
obstacles (shown in grey
colour) with one of the
possible paths

researchers have used classic algorithms to generate initial paths. In this work, a
novel strategy has been used to generate the initial population. This has been shown
below using an example. First, the user inputs the size of the cell where the robot
has to move on the path as well as the size of the cell and population size and start
and end points. The algorithm starts from the start point then selects four points
surrounding the start point (i.e. left, right, up, down). Then, a random number is
generated which is then compared with an optimal path probability (OPP) which is
set by the user. If the random number is greater than this OPP value, the next point is
selected out of four points which have the least distance from the end point. However,
if the generated random number is found to be lower than the set OPP, then a random
number is selected out of the surrounding numbers. This strategy gives the advantage
of generating various paths between the start point and the end point. However, it is
to be worth noting that this can make the cell visited by the robot more than once,
which usually does not happen in case of A* algorithm. The operators of the FPA
are designed to take care of this so that none of the cells is repeated more than once.
In order to avoid the problem of boundary elements, the padding of zeros has also
been added to one level and two levels.

2.2.3 Global Pollination Rule

Global pollination rule as mentioned in the previous section is used to move the pop-
ulation individual to the current best individual. Unlike assembly sequence planning,
the length of the population individualsmay vary in robot path planning problem, and
hence, the pollination operators have to be modified to take into account the length of
the individual. Following Eq. 1, the length of the flowers (i.e. flower in consideration
and the best flower found so far) is determined, and the flower with smaller length is
appended with the zeros. This process makes the two flowers equal in length. Then,
the elementwise difference between the two flowers is calculated, and if elements
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Fig. 9 Example of global pollination rule for the proposed FPA-based approach

are found to be less than zero, the absolute value of the element is taken into consid-
eration. Thereafter, a Levy vector (a random vector following the Levy distribution)
equal to the length of the flower in consideration is generated. This Levy vector is
multiplied elementwise by the difference of the flower in consideration, and the best
flower found so far. This may cause some of the elements’ value more than the value
of a maximum number of cells. In order to repair this, these elements are replaced
with nearest neighbouring elements. Finally, all the zeros present in the flower are
removed, if any. An example of a global pollination rule is shown in Fig. 9.

2.2.4 Local Pollination Rule

Local pollination rule as mentioned in the previous section is used to improve the
population individual locally. In this pollination rule, the flower in consideration and
two random flowers taken from the same population could be of different length. At
first, two random numbers are generated using uniform distribution and correspond-
ing to the random numbers, and two individuals are selected from the population.
Like global pollination rule, zeros are added at the end of the flowers to make them
uniform sized. Then, the elementwise subtraction between the two flowers is per-
formed. Following which, all the elements, which are less than zero, are made zero.
Thereafter, a random vector equal to the length of the difference is generated, where
values of the elements are generated following the uniform distribution. This random
vector is then multiplied elementwise by the difference of the flower obtained earlier.
Then, this multiplication is added elementwise into the flower in consideration. This
addition might cause few elements to have the value more than the number of cells,
and in order to avoid these cells, all these values are replaced by the neighbouring
elements starting from the first element, which is made as the starting point of the
robot tomake the path feasible. Finally, all the zeros present in the flower are removed
and to repair the last element of the path is used as the starting point and the same
process as discussed in the population generation is used to reach the end point. An
example of local pollination rule is shown in Fig. 10.
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Fig. 10 Example of local pollination rule for the proposed FPA-based approach

2.2.5 Fitness Function

To compare the different population individuals, a fitness function has been used,
which shows the quality of that individual. In case of mobile robot path planning
problem, several criteria like safety, smoothness, covered distance, etc. can be con-
sidered. In the development of a robust soft computing algorithm, the selection of
a fitness function is very important, as the algorithm would apply the information
generated by this function. In the present work, four different criteria have been taken
into account which was recently used in the paper by Lamini et al. [36]. The details
of the fitness function can be found in that paper. These criteria used are energy, cov-
ered path length, safety-first level (SFL) and safety-second level (SSL). Equation 4
shows the fitness function.

FF = 1

w1 ∗ l(p) + ws1 ∗ s1(P) + ws2 ∗ s2(P)
− E (4)

li(p) represents the path length.

A =
N−1∑

i=1

{
1, If the next element is the neighbouring element
euclidean distance, otherwise

s1 (p) represents the safety-first level (SFL). If an obstacle is found in the first security
level of the present position p (xi, yi) of the robot, the si gets a fine of +1. The value
can be calculated using

s1(p) =
N−1∑

i=1

si

s2 (p) represents safety-second level (SSL). If an obstacle is found in the second
security level of the present position p (xi, yi) of the robot, the si gets a fine of +1.
The value can be calculated using:
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s2(p) =
N−1∑

i=1

si

E is the energy term which is a penalty for energy consumption, if the robot
makes a turn, E gets a fine of +1, and gets 0 if it continues moving straight. wl, ws1
and ws2 are the weight coefficients for the covered path length, safety-first level and
safety-second level properties for a given path p.

3 Results and Discussions

This work describes the different approaches used for mobile robot path planning
problems. Approaches that fall under soft computing are also detailed and their
working, and optimality criteria with their applications have also been provided.
Thereafter, a flower pollination-based algorithm has been attempted to model the
problem for the path planning problem, and also the results of it has also been
shown. The proposed approach has been tested on a sample cell, which has a grid
size of (5 * 5) and shown in Fig. 8, to verify the results. Then, another different map,
which is larger than the previous one and more complex, has been taken from the
work by Lamini et al. [36] where the grid sizes were (29 * 30). This data set is given
in Table 1.

When the proposed algorithm is run with the optimal set of parameters with 40
independent runs, in case of environment a, the average number of turns for the
optimal path yielded by the proposed FPA is found to be 2.4. Figure 11 shows the
optimal path found by the proposed FPA approach for the environment ‘a’. In the
figure, point number 1 is the start point for the robot (in blue colour), point number
25 is the end point (in yellow colour) and static obstacles are shown in grey colour.

When the proposed algorithm is run with the optimal set of parameters with 40
independent runs, in case of environment ‘b’, the average number of turns for the
optimal path yielded by the proposed FPA is found to be 8.6. As mentioned earlier
that the optimal path should be safe and should take the least energy to travel through,
one of the important criteria was the number of turns which require additional energy
by the robotic system. These frequent turns make the path zigzag which also reduces
the smoothness of the movement of the mobile robot.

Table 2 displays the number of turns for each environment case found in the
optimal path yielded by the proposed FPA. Figure 12 shows the optimal path found
by the proposed FPA approach.

Table 1 Robot navigation
environments

Environments Rows Columns

Environment ‘a’ 5 5

Environment ‘b’ 29 30
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Fig. 11 Optimal path
yielded by the proposed
approach for the
environment ‘a’

Table 2 Number of turns for
each environment case found
in the optimal path yielded by
the proposed FPA

Environments Number of turns in the optimal path

Environment ‘a’ 1

Environment ‘b’ 7

Fig. 12 Optimal path yielded by the proposed approach for environment ‘b’



com.ca@frederick.ac.cy

144 A. Mishra and S. Deb

4 Conclusions for the Book Chapter

Mobile robot path planning has been a hot area of research for a long time. To
solve this problem, first classical algorithms were developed which used to be quite
computationally expensive then with the advent of artificially intelligent algorithms,
and soft computing-based algorithms also have been applied in this domain. Since
the power of the computers nowadays has gone manifold, these algorithms and their
hybrid versions have been very popular. These soft computing planners for mobile
robot navigation problem is not only limited to the path planning on land but also
can be used to plan in different environments like the aerial, underwater and different
terrains. In this chapter, basic concepts related to mobile robot navigation have been
discussed followed by the brief details of different soft computing-based algorithms
that have been used for robot navigation problem. A section has been devoted to
discuss the challenges in the application of the soft computing-based algorithm in
this field. Then, an existing algorithm, namely flower pollination algorithm, has been
developed for the mobile robot path planning in a static environment. The working
operators, namely global pollination and local pollination of the FPA-based approach,
are also elaborated and how the challenges of application of FPA are overcome. Then,
finally, the results of the proposed approach have been shown using a few examples,
followed by the discussions.
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Chapter 7
Smartphone Indoor Localization
Using Bio-inspired Modeling

Rafael Alexandrou, Harris Papadopoulos and Andreas Konstantinidis

1 Introduction

The fact that people spend the vast majority of their time inside buildings including
their home, work place, libraries, airports, etc., in combination with the ubiquitous
availability of the smartphone devices has boosted the interest of Indoor localization
services (ILS) for applications such aswayfinding, labor optimization, asset tracking,
and more.

The inability, however, of the Global Navigation Satellite Systems (GNSS), such
as GPS, to accurately localize a device in an indoor environment due to the satellite
signal attenuation while passing through solid objects (such as ceiling, or concrete
walls), has directed the indoor localization community to research alternative tech-
niques. For example, a variety of indoor localization techniques utilize technologies
such as Bluetooth Beacons (BLE), infrared, audio and visual analytics, Li-Fi tech-
nologies, RFID, sensor networks and their combinations for localizing a device in
an indoor environment with a fine-grain accuracy [1]. These techniques, however,
require the deployment of specialized equipment such us antennas, beacons, and
custom transmitters a priory [2], which is time consuming and costly.

Numerous ILS that rely on geolocation databases containing data retrieved from
the existing infrastructure of a building or the environment, such aswireless,magnetic
and light signals have been, therefore, implemented to alleviate the aforementioned
challenges. These ILS, such as Google, Indoo.rs, Navizon, IndoorAtlas, ByteLight
and Anyplace1 [3] provide the accurate location (position) of a user upon request
without the need of expensive additional hardware installation.

1Available at: http://anyplace.cs.ucy.ac.cy/.
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In particular, ILS geolocation DB entries act as reference points for the requested
localization tasks. A smartphone can, therefore, determine its location at a coarse
granularity (i.e., km or hundreds of meters) up to a fine granularity (i.e., 1–2m), by
comparing against the reference points, either on the service (server-side) or on the
smartphone itself (client-side). As explained in [4], one fundamental drawback of
server-side ILS is that these receive information about the location of a user while
servicing them, generating a variety of location privacy concerns (e.g., surveillance
or data for unsolicited advertising). These concerns do not exist with the client-side
ILS, as the necessary data are downloaded and the localization is directly performed
on the smartphone, with no location-sensitive information being revealed to any type
of service. The major drawback of the latter, however, is in terms of performance,
since the data needed for localization can be potentially very large (e.g., WiGLE.net
had 8.2 billion unique records by August, 2019).

In this chapter, we assume that ILS are fundamentally un-trusted and the already
resource-constraint smartphone devices in terms of storage, energy and computa-
tional power will struggle to perform the indoor localization process locally on the
device considering the ever-increasing volume of indoor location data. Therefore,
we aim at examining a bio-inspired computing technique, that is an artificial neural
network, for modeling the geolocation data at the server-side and then forwarding
the model to the client-side to be used for predicting the exact user location. This will
allow smartphone users to navigate in indoor environments with reduced resources
consumption and high location accuracy without revealing their exact location at a
central ILS, as this will be thoroughly explained in Sect. 4.

The rest of the chapter is organized as follows. Section2 covers the background
on indoor localization with smartphones and provides an overview on bio-inspired
computing. Section3 introduces related work on bio-inspired computing techniques
and their applications on localization and navigation challenges. Furthermore, Sect. 4
presents the proposed ANN approach, which is then evaluated in Sect. 5. Finally,
Sect. 6 summarizes our conclusions and introduces several future challenges.

2 Background

In this section, background on indoor localization that lies at the foundations of the
proposed approach is initially introduced, followed by an overview of bio-inspired
computing.

2.1 Indoor Localization with Smartphones

In the literature, there is a wide range of technologies dealing with smartphone
device localization in outdoor and indoor environments. In outdoor environments,
the Global Navigation Satellite Systems (GNSS), such as GPS and Galileo, are the
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predominant technologies for localization. GNSS technologies, however, require
high energy consumption and their weak satellite signal is often negatively affected
from the environment (e.g., blocked by physical obstacles, cloudy days, dense urban
areas, etc.). Besides GNSS, numerous proprietary solutions are also proposed by the
localization community [1] such as BLE sensors, visual or acoustic analysis, RFID,
wireless sensor networks, laser and Li-Fi, IMUs and their combinations into hybrid
systems. Even though in most cases, these techniques provide a high localization
accuracy, their drawback is the necessity of the deployment and calibration of addi-
tional equipment such as beacons, custom transmitters, proximity sensors, cameras
dedicated to localization. The installation and calibration process of this equipment
is often expensive in terms of both cost and time, while the approaches we discuss
in this chapter mainly rely on conventional smartphones and wireless LANs already
deployed in most buildings, as explained below:

(i) Global Navigation Satellite Systems (GNSS): use radio signals broadcasted
from satellites for localizing a device with high accuracy (which is often less
than 1m error). Since the localization process is carried out on the smartphone
device, we consider that there are no privacy concerns with this approach.
However, GNSS has an expensive energy tag and is unavailable or significantly
demoted in indoor environments, due to the attenuation of the satellites signal
strength [1].

(ii) Cell/Wi-Fi Databases: composed of radio signals retrieved from mobile cell
towers and/or Wi-Fi access points (APs). They offer coarse accuracy that of-
ten spans from 1000 to less than 200m error. The cell/Wi-Fi databases are
often constructed offline by contributors (such as an Android smartphone user
transmitting Wi-Fi AP and cell tower data to Google). In this case, smartphone
users can request their current location from a cloud-based localization service.
Subsequently, the localization process is mainly carried out on the server and
consequently the service fundamentally violates a user’s location privacy.

(iii) Wi-Fi Fingerprints: construct a database with radio signals from Wi-Fi APs
similarly to (ii), but at a much higher density. In the literature, fingerprinting
systems such as the Anyplace [5–7] achieved the second-highest known ac-
curacy [8], with an average error of 1.96m. Anyplace consists of two phases:
The offline phase that utilizes a smartphone application, named “the logger,"
to record the so-called Wi-Fi Fingerprints, which are composed of received
signal strength indications (RSSi) of Wi-Fi APs at certain locations (x, y) of a
building. Thereinafter, the Wi-Fi Fingerprints are joint into an N × M matrix,
commonly known as the Wi-Fi RadioMap, where N is the number of unique
(x, y) fingerprints and M the total number of APs. In the online phase, a s-
martphone user observes its current RSS fingerprint and compares it against
the RadioMap in order to find the best match, using known algorithms such as
KNN and WKNN [9] that work as follows:

The K nearest neighbor (KNN) approach initially finds the K nearest fin-
gerprints around the user’s device using the Euclidean distance du = ||Vi −
Vu ||,∀Vi ∈ RM between the user’s currently observed fingerprint Vu against
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all fingerprints Vi in the RadioMap. Then, it calculates the user location using
the convex combination of those K fingerprints. The Weighted-KNN (WKN-
N) approach works similarly to KNN with the difference that the K nearest
neighbors are assigned a weight equal to:

wi ∝ 1

||Vi − Vu || .

This assigns a more fair importance to the closest fingerprints and considers
less the farthest fingerprints in the calculations; as opposed to KNN that assigns
all fingerprints an equal importance (i.e., a weight equal to wi = 1/K ), which
may decrease the localization accuracy since fingerprints that are far away may
also be included in the calculation.

The RSS fingerprint approaches can be classified as follows:

(a) Server-Side (SS) approach: the bulk of the localization process is carried out by
the indoor localization service (ILS) that has an unlimited energy, storage and
processing budget. Therefore, the client-side requires little network messaging,
minimal energy consumption and insignificantly small storage requirements. In
this case, however, the SS fundamentally violates the smartphone user location
privacy since the bulk of operation is carried out by the ILS.

(b) Client-Side (CS) approach: the smartphone user requests and downloads the
Radiomap from the ILS and therefore the bulk of the localization process is
carried out by the smartphone device. Therefore, the CS approach preserves
the user location privacy, but unfortunately, downloading the whole RadioMap
may result in high consumptions of the precious and limited smartphone battery,
storage space and bandwidth, due to the fact that RadioMaps can potentially be
very large.

The examined bio-inspired computing technique aims at alleviating all the afore-
mentioned challenges of the CS and SS approaches by modeling the necessary data
needed for indoor localization, i.e, the required RM at the server side and then for-
warding the model to the client side where it will be used for predicting the exact user
location. The prediction model will include the data of the whole RM and therefore
will not allow the server to gain knowledge regarding the user’s exact location and
it will be of a much smaller size; decreasing in this way the resources consumption
required for the localization process without deteriorating the localization accuracy.

2.2 Bio-inspired Computing: An Overview

Bio-inspired Computing (BIC) is the field that designs and develops computational
algorithms and models inspired by biological mechanisms and living phenomena for
effectively tackling real-life problems. BIC emerges from the combination of several
fields such as mathematics, biology and computer science and more specifically
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topics such as evolution, connectionism and social behavior. In the literature, BIC
is often used to deal with artificial intelligence challenges by emulating the learning
processes of biological organisms [10]. BIC techniques can be roughly classified as
follows:

(i) Bio-inspired optimization techniques are based on the principles of biological
systems to optimize the solution of a specific mathematical problem. In particu-
lar, real-life problems often have high complexity that makes it difficult to search
for all possible solutions. Therefore, optimization algorithms are developed to
mimic the biological evolution or behavior of animal/insect groups by defining
deterministic or random rules that can be applied for approximating the optimal
solution of such optimization problems. The twomain bio-inspired optimization
algorithms are:

Swarm Intelligence (SI) [11] refers to systems consisting of a population of
simple agents that interact with each other and their environment. Interactions
between agents lead to an intelligent global behavior of the population which is
unknown to an individual. In particular, such systems are inspired by the collec-
tive behavior of self-organized systems [11]; having a variety of examples such
as ant-based routing, human swarming, swarm grammars, swarmic art, crowd
simulation, and swarm robotics. The SI approach finds applications on a vast
amount of different areas including engineering, power control,medical, finance,
etc., [12, 13].

Evolutionary Algorithms (EA) [14] use mechanisms inspired by biological evo-
lution such as selection, recombination and mutation. EAs are defined by their
population-based nature while evolving via simulated generations having appli-
cations [15, 16] in a variety of areas including natural sciences, earth sciences,
finance and economics, social sciences, scheduling, etc.

(ii) Bio-inspired Modeling refers to biologically inspired computational model-
s that aim to resolve challenging problems in an intelligent manner [17]. In
particular, such models aim to propose unconventional architectures and novel
problem paradigms. Artificial Neural Networks (ANNs) together with SI and
EA (mentioned above) are considered as the major approaches for generating
bio-inspired models.

Artificial Neural Networks (ANNs) [18] are networks of connected artificial neu-
rons inspired by the composition of biological brains. In particular, ANNs at-
tempt to perform tasks without being explicitly programmed. Contrary, they
consider examples in order to find identifying characteristics from the learn-
ing material itself, without any prior knowledge about the material. The author
of [19] provided a provisional definition as follows. “A neural network is an
interconnected assembly of simple processing elements, units or nodes, whose
functionality is loosely based on the animal neuron. The processing ability of the
network is stored in the interunit connection strengths, or weights, obtained by a
process of adaptation to, or learning from, a set of training patterns”. Similarly
to a biological brain, artificial neurons are able to transfer signals (inputs) to
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the upcoming artificial neurons through connections or edges. In Feed-Forward
ANN, which are the most widely used type, neurons are arranged in layers and
the signal is transferred from the neurons of one layer to those of the next. Each
neuron performs a simple transformation to the total signal it receives from the
previous layer and sends the result as its output for the next layer. The outputs of
the final layer, called output layer, neurons constitute the outputs of the ANN.
The learning process adjusts the strengths of individual connections, thus in-
creasing or decreasing the intensity of the signal transferred through them, in
a way that brings the outputs of the output layer neurons closer to the desired
output of the training patterns. The final trained ANN is obtained after many
successive presentations of the training patterns and corresponding connection
strength adjustments. These signals are used in a way to formulate non-linear
functions that will perform different kinds of transformations on their input, by
adjusting the weight of an input signal, in order to classify the input.

ANN models are used in a variety of areas including social network filtering,
medical diagnosis, computer vision, and localization techniques. Some examples of
ANN real-life applications are estrogen receptor status prediction for breast cancer
[20], stroke risk estimation [21], stock market prediction [22], total electron content
prediction [23], malicious URL detection [24], and android malware detection on
smartphones [25].

3 Literature Review

Bio-inspired computing, as a general field with a wide variety of application areas,
has been also used extensively for addressing navigation and localization challenges.
Themajority of the research studies in the literature dealwithwireless sensor network
node location estimation and robots/vehicles autonomous navigation and localiza-
tion in outdoor and indoor environments. In most cases, bio-inspired computing
approaches are used for image processing, self location estimation, and even robot
control. Regarding indoor localization applications the focus is mainly on the esti-
mation of a requested location and the optimization of the localization process. This
section presents research studies related to applications of bio-inspired computing
techniques for localization and navigation challenges in both indoor and outdoor
environments, as summarized in Table1.

3.1 Localization Using Bio-inspired Techniques

In [26], the simultaneous localization and mapping (SLAM) problem on mobile
robot agents, which refers to tracking an agent while simultaneously construct a
map of an unknown environment, has been tackled using a genetic algorithm (GA).
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Table 1 Bio-inspired localization and navigation
References Application area Objective Bio-inspired technique

[26] Robotics SLAM in robot control Genetic algorithm

[27] Robotics SLAM in dynamic environments Short-term memory neural
networks

[28] Robotics SLAM in underwater
environments

Continuous attractor neural
networks

[29] Tracking Localization of moving magnetic
Objects

Genetic algorithm

[30] Robotics, autonomous
vehicles

Autonomous vehicle localization
model

Neural networks

[31–33] Robotics SLAM RatSLAM

[34] Wireless sensor networks Autonomous deployment and
localization of sensor nodes

Particle swarm optimization,
Bacterial foraging algorithm

[35] Wireless sensor networks Localization of mobile anchor
node

Centroid algorithm, Genetic
algorithm

[36] Wireless sensor networks Sensor node localization scheme Artificial neural networks,
Genetic algorithm

[37] Wireless sensor networks Sensor node localization scheme Genetic algorithm

[38] Wireless sensor networks DV-hop optimization Genetic algorithm

[39] Wireless sensor networks Coverage and localization
optimization

NSGA-II

[40] Wireless sensor networks Localization error optimization Hybrid genetic
algorithm-differential
evolution

[41] Wireless sensor networks Localization as optimization
problem

Salp swarm algorithm

[42] Wireless sensor networks Cooperative localization in
industrial WSN

Dragonlfy algorithm, particle
swarm optimization

[43] Indoor localization Fingerprinting Boosting multi layer neural
networks

[44] Indoor localization Fingerprinting algorithms’
comparison

Types of recurrent neural
networks

[45] Indoor localization Fingerprinting deep learning
algorithms’ comparison

Types of deep learning
algorithms

[46] Indoor localization Fingerprinting with deep learning Greedy deep learning
algorithm

[47] Indoor localization Fingerprinting with deep learning Deep neural networks

[48] Indoor localization Fingerprint-image localization Convolutional neural networks

[49] Indoor localization Localization as optimization
problem

Particle swarm optimization,
JADE

[50] Indoor localization Localization as optimization
problem

Particle swarm optimization

[51] Indoor localization Coverage versus energy
consumption

Multi-objective evolutionary
algorithm based on
decomposition

[52] Indoor localization Hybrid fuzzy fingerprinting Particle swarm optimization
and gravitational search
algorithm, neural networks
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Similarly, [27] proposed a short-termmemory (STM) neural network to deal with the
SLAMproblem in dynamic environments. Additionally, the authors in [28] proposed
a continuous attractor neural network (CANN) to address the SLAM problem for
underwater environments using visual references. In [29], aGAwas tuned for provid-
ing fast and reliable solutions for localizing the trajectory of ferromagnetic moving
objects within a bounded perimeter. A more recent research study [30] presented an
application of autonomous vehicle navigation using artificial neural network mod-
els; the latter were trained over image and orientation of mobile robots. Finally, the
research studies in [31–33] introduced several variations of the RatSLAM approach
aiming at solving the visual SLAM problem on a wheel-chair robot and a humanoid
robot, by utilizing different bio-inspired techniques.

The authors in [34] utilized both particle swarm optimization (PSO) and Bacterial
foraging algorithm (BFA) for providing autonomous deployment and localization of
wireless sensor nodes in the context of multi-objective optimization. Contrary, [35]
proposed a received signal strength intensity (RSSI)-based localization technique of
mobile anchor nodes using a centroid algorithm for initial estimation and a genetic
algorithm (GA) for precise localization. The research studies in [36, 37] propose
various RSSI-based localization schemes in the area of wireless sensor networks.
In particular, [36] utilize a GA for initially adjusting the structure of an artificial
neural network (ANN), which is then used for localization and [37] combine trilat-
eration techniques with GA for error minimization during localization. The research
study in [38] hybridized the DV-Hop range-free localization algorithm with a GA
for improving the localization accuracy compared to existing algorithms. In [39],
a NSGA-II algorithm is utilized for maximizing the coverage and optimizing the
audio localization in a WSN, at the same time. In [40] a Hybrid GA with differential
evolution (GADE) is proposed for minimizing the localization error of trilateration
techniques. The authors of [41] propose a salp swarm algorithm (SSA) for dealing
with the localization of sensor nodes in WSN. In [42], a Hybrid bio-inspired opti-
mization algorithm for localization is proposed that combines a dragonfly algorithm
(DA) with PSO. Here, it is important to note that none of the above research studies
deal explicitly with smartphone user indoor localization.

3.2 Smartphone Indoor Navigation Using Bio-inspired
Techniques

In [43], a boosting multi-layer neural network (MLNN) is proposed to improve
the fingerprinting indoor localization technique in terms of localization accuracy.
Similarly, [44] presents a comparison of several fingerprinting indoor localization
approaches including recurrent neural networks (RNN), long short-term memory
(LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM). The ex-
perimental evaluation demonstrated the superiority of the RNN approach with re-
spect to the other conventional fingerprinting approaches. Both of the aforementioned
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research studies have proposed fingerprinting techniques that reduce the localization
error, but none examined the smartphone resources consumption and/or the smart-
phone user privacy violation.

The authors of [45] presented a deep learning-based fingerprinting localization
schema, which was compared with deep neural network (DNN), deep belief net-
work (DBN), and Gaussian-Bernoulli deep belief networks (GB-DBN) in terms of
localization accuracy and generalization error reduction. A deep learning approach
is also presented in [46] that utilizes deep architectures and channel state informa-
tion (CSI) on fingerprinting for localization error minimization compared to existing
techniques. Similarly, [47] presents a WiDeep approach, that is a deep ANN fin-
gerprinting approach, which leverages from probabilistic denoising auto-encoder.
All three research studies provide solutions for improving fingerprinting localization
accuracy. However, the deep neural network consumes a high volume of resources
during the training and localization phase. More recently, [48] proposes a hybrid
fingerprint-image localization with convolutional neural networks (CNN) for rep-
resentation of fingerprints as images. The results of this research work show the
robustness of the framework, however, it is evident that image processing requires
high computational effort compared to the conventional fingerprinting techniques.

An indoor localization optimization problem is formulated in [49] and tackled
with a particle swarm optimization (PSO) approach, named JADE. Likewise, [50]
proposed a fingerprinting localization and tracking systemwith PSO and Kalman fil-
ter (KF). The authors of [51] presented MILoS, a multi-objective indoor localization
service that utilizes a Multi-Objective Evolutionary Algorithm Based on Decompo-
sition (MOEA/D) to maximize the coverage and minimize the energy consumption,
at the same time. The research study in [52] proposes a Hybrid Fuzzy Fingerprint-
ing approach that trains ANN models composed of weight vectors optimized using
particle swarm optimization and Gravitational Search Algorithm (FPSOGSA).

Finally, some other attempts that are strictly related to the propositions of this
research study include [4] that proposes a simple heuristic on top of a bloom-filter
data structure, named Temporal VectorMap (TVM), for providing fine-grain local-
ization accuracy while preserving the users privacy and optimizing the performance
issuesmentioned inSect. 2.1.Moreover, in [53], theGrap (GraphPrefetching) frame-
work structurally analyzes building topologies to identify important areas, which are
flagged as virtual targets and then an online heuristic that decides which areas to be
downloaded and prefetched in the smartphone device for offline indoor navigation.

4 Indoor Localization Using Artificial Neural Networks

This section introduces the system model and presents an indoor localization ap-
proach that aims at improving the existing client-side fingerprinting technique by
utilizing artificial neural networks.
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Fig. 1 Bio-inspired fingerprinting

4.1 System Model

We assume an area A divided into several building areas A1, .., An , which con-
sist of several floors F1, .., Fm (see Fig. 1). Each Ai and its corresponding Fj con-
tain a finite set of (x, y) points and its covered by a set of Wi-Fi access points
{ap1, ap2, . . . , apM}, each covering a planar points. Area Ai is not necessarily con-
tinuous and can be considered as the joint area of all api ∈ AP (i.e., global coverage).
Each api has a unique ID (i.e., MAC address) that is publicly broadcasted and pas-
sively received by anyonemoving in the a points of api . The signal intensity at which
the ID of api is received at location (x, y), is termed the Received Signal Strength
(RSS) of api at (x, y), having a value in the range [−30 to − 110] dB.

Let a static (cloud-based) localization service s have constructed beforehand an
N × M table, coined RadioMap (RM), which records the RSS of the api ∈ AP
broadcasts at specified (x, y) ∈ A locations.Whenanapi is not seen at a certain (x, y)
the RM records “−110” in its respective cell. A user u localizes through the indoor
positioning service s, using the ID and RSS broadcasts of surrounding api ∈ AP
while moving. This information is termed, hereafter, RSS Vector or Fingerprint (Vu)
of user u, which changes from location to location and over time. Contrary to RM
rows having M attributes, Vu has only M ′ � M attributes.

4.2 Research Goal

As mentioned in Sect. 2.1, conventional server-side (SS) and client-side (CS) tech-
niques have some advantages but also face particular drawbacks. The SS approach
violates the smartphone user privacy Pu since the whole process is performed at
the server side, thus server has knowledge of the exact user location, but it requires
minimum resources at the smartphone device. On the other hand, theCS approach al-
leviates the privacy violation concern, but requires high resources in terms of energy
consumption, computational power and storage space since the whole radiomap RM
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needs to be downloaded and stored on the smartphone device and all calculations
should be performed locally on the smartphone for finding the user’s exact location.

This research study aims at utilizing a bio-inspired modeling approach, that is
an artificial neural network (ANN), for calculating prediction models M of various
granularity from a subset of data RM ′ of the whole radiomap data RM that will
be used for indoor localization, each providing different levels of user privacy and
performance. In particular, a prediction model MA will be calculated , for the subset
radiomap data RM ′ = RMA of the whole area A, a MAi for the RM ′ = RMAi of

particular building areas Ai and even a M
Fj

Ai
for the RM ′ = RM

Fj

Ai
of a particular

floor Fj of area Ai , at the server side s. Any of these models will be then forwarded
to the user u upon request to be used for predicting the exact user location on the
smartphone device.

Our research goal is to preserve the user privacy while maintaining high local-
ization accuracy (i.e., less localization error) and reduced resources consumption
on the smartphone device, at the same time.

Privacy Violation is the probability of the host server (s) guessing the user’s (u)
actual location, and it is given by

Pu = |RM ′|
|RM | (1)

where |RM ′| is the size of data either used by s for generatingM or directly forwarded
to u by s and RM is the whole radiomap.

The Localization Error is defined as the Haversine distance (in km), between the
predicted location (Lat2, Lon2) and the actual location (Lat1, Lon1) of u,

d = 2r × arcsin

(√
sin2

(
Lat2 − Lat1

2

)
+ cos(Lat1) cos(Lat2) sin2

(
Lon2 − Lon1

2

))
(2)

where r = 6371 km is the radius of earth.
Finally, the resources consumption includes the storage space St S = |RM ′|

× kb, measured in kilobytes (kb), that is required by u to localize, and the compu-
tational power CP = |RM ′| × t that refers to the processing time, in milliseconds
(ms), on the smartphone device for performing a localization step. Note that the
energy consumption, in joules, is equal to E = (St S × E1) + (CP × E2), where
E1 is the energy needed to download one kb of data on u and E2 the energy needed
for processing one kb during the localization step.

For example, in Fig. 1, consider an ANN running at s and training various models
M that correspond to the RMs of several areas, which can be used for indoor location
predictions. A user u enters floor F2 of building A1 and desires to navigate toward
a nearby point of interest. u uses a smartphone application to choose and download
from s an indoor location prediction model based on personal preferences. That is an
area level prediction model MA for high user privacy, but with less location accuracy
and higher resources consumption, or a building level prediction model MA1 , ..,MAn
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that will provide less user privacy than before, since the server will increase the
probability of guessing the exact user location, but with higher localization accuracy
and less resources consumption. Finally, u requests MA1 and s responds back with
the requested prediction model. As a result, u navigates with a guaranteed building
level privacy, since s just knows that u is in building A1, with fine-grain accuracy
(as this will be experimentally shown in the next evaluation Sect. 5), it consumes
less E and St S, since |MA1 | � |RMA1 |, and requires less CP , since the prediction
process ismuch faster than using theWKNNapproach on thewhole RM . In this way,
the proposed technique alleviates all aforementioned challenges of the conventional
fingerprinting techniques.

4.3 Radiomap Modeling Using Artificial Neural Networks

The radiomap modeling process is divided into three phases: Data preparation and
Normalization, model training and model extraction.

The data preparation and normalization phase deals with the normalization of the
radiomapdata in order to be fed into an artificial neural network (ANNs). In particular,
as explained before, radiomaps consist of crowdsourced data represented as vectors
of RSSI values of surrounding Wi-Fi APs mapped to a specific location within an
area. Furthermore, RSSI values are denoted in a range of −30 to −110db, where the
latter indicates a minimum intensity that cannot be sensed by the smartphone device.
In addition, their corresponding location is defined in real values varying based on
the area they represent. Therefore, since an area’s coordinates will vary only at the
least decimals, we eliminated the starting, common per area, decimals. This allowed
our model to be trained while focusing on changes that matter to localization in the
particular area. Additionally, the normalization minimized the rounding issues that
might have occurred from the use of the original values.

During the model training phase, ANNs were trained to model the radiomaps of
particular areas. The trained models are able to predict the user’s current location
based on a vector Vu that contains the RSSIs of the user’s surrounding Wi-Fi APs,
arranged in the same order for all patterns. The models used were fully connected
feed-forward ANNs with sigmoid hidden and linear output activation functions and
were trained with a stochastic gradient descent optimizer called Adam. Implementa-
tion was performed using the Scikit-Learn library in a Python environment with the
ANNs regression algorithmMLPRegressor. Following a trial and error approach for
the network’s structure led to an average optimum scenario for similar-sized RMs.
For example, floor-level RMs required a hidden layer consisting of 300 hidden units
and| building level RMs required a hidden layer consisting of 1000 hidden units.

Finally, model extraction dealt with extracting the trained model in order to be
used on a smartphone device. In particular, Scikit-Learn uses a Python tool to extract
models commonly known as pickle or its updated version called joblib. Both tools
extract unnecessary information along with the model itself, thing that led to larger
files compared to the original RMs. Since one of our major objectives is to minimize
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the storage space on the smartphone device, we instead followed a manual way for
extracting the models. In particular, we extracted from the model its corresponding
coefficients, and intercepts and saved them into two small files. On the smartphone
device, we loaded the two files and reconstructed the model locally, a priori to local-
ization. Note that this reconstruction does not imply re-training the model, since the
coefficients, and intercepts are known from the training phase.

5 Experimental Evaluation

5.1 Datasets and Evaluation Metrics

For the experimental evaluation of our proposed bio-inspired indoor localization
approach, we used a real dataset consisted of ≈45,000 reference fingerprints taken
from ≈120 Wi-Fi APs installed in four floors of a building in Cyprus. The dataset
gathered scales up to several GBs to ensure the validity of our approach. Furthermore,
it contains five radiomaps of which one corresponds to the full building and the other
to the four floors of the building. In addition, for the sake of this experimental
evaluation, each radiomap was randomly divided into a Train set and a Test set
representing 80% and 20% of the data, respectively. The models were trained on the
training set, as explained in Sect. 4.3 and evaluated using the aforementioned test set
through several experimental studies.

The proposed fingerprinting approach is evaluated in terms of privacy violation,
localization error, storage space, and computational power on the client device, as
introduced in Sect. 4.2.

5.2 Evaluation Results

This subsection compares the proposedANNapproachwith the conventionalweight-
ed K nearest neighbors (WKNN) server-side (SS) and client-side (CS) approaches in
terms of the performance metrics introduced in Sect. 4.2. Figure2-right shows that
the required Storage Space of WKNN SS approach is negligible, since most data is
stored at the server. Contrary, the ANN approach requires less storage space than
the WKNN CS approach. In particular, the proposed approach requires less storage
space that ranges from ≈62% for the second floor to 1.69% for floor −1 of the
reference building.

In terms of Localization Error, our experimental studies show that the proposed
ANN approachmaintained an acceptable level of localization error compared to both
SS and CS, as demonstrated in Fig. 2-left. Moreover, it is also revealed that the ANN
modeling approach improves storage space requirements and execution time at the
smartphone device in the sake of a worst localization error. This trade-off can be
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Fig. 2 Localization error and storage space requirements

monitored according to the user’s preference. The localization error of the proposed
approach ranges between 3.68% (which is approximately 0.27m) at the best-case
scenario to 47.74% (which is approximately 2.20 m) at the worst-case scenario.

Table2 shows a comparison of the localization techniques in terms of average
Computational Power (i.e., execution time) per localization step on the user’s u
smartphone device. It is important to notice that for WKNN SS, the majority of
processing is performed at s and the execution time on u is negligible. The results
show that the WKNN CS approach highly depends on the data size and, therefore,
the execution time increases as the data size increases, as opposed to the proposed
ANN approach that maintains a low execution time in all cases.

Finally in terms ofPrivacy Violation, Fig. 3 clearly shows thatWKNNSS violates
user privacy by 100% since s knows the exact user location. Contrary, the proposed
ANN inherits the privacy levels of the WKNNCS approach due to the fact that s just
knows the location data either utilized to create the prediction model, or requested
and forwarded to the client side for performing the localization process locally on
the smartphone device.

Table 2 Average
computational power per
localization step (in ms)

Radiomap WKNN SS WKNN CS ANN

f-1 ≈0 66.885 0.0138

f0 ≈0 29.911 0.0104

f1 ≈0 32.144 0.0048

f2 ≈0 47.163 0.0079

Full building ≈0 392.603 0.027
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Fig. 3 Privacy violation
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6 Conclusions and Future Challenges

In this chapter, a variety of localization and navigation challenges tackled by bio-
inspired techniques are initially reviewed and discussed. Then a bio-inspired indoor
localization fingerprinting approach that utilizes artificial neural networks (ANNs) is
proposed. The ANN is used to model RMs of various granularity at the server-side,
which are then forwarded to the smartphone user upon request for offline indoor
navigation. The experimental results demonstrate the superiority of the proposed
approachwhen comparedwith conventional client-side and server-sidefingerprinting
approaches, in terms of resources consumption, while preserving user privacy and
maintaining localization accuracy. Some future challenges on smartphoneuser indoor
localization and the applicability of bio-inspired techniques are follow.

The single objective optimization of the performance objectives introduced in
Sect. 5 (that is storage space and energy consumption, computational power and pri-
vacy) using metaheuristics such as genetic algorithms (GAs) can be a promising
extension. Another future challenge along that direction could be the hybridization
of single objective optimization techniques (e.g., GAs) with problem-specific local
search heuristics (commonly known as memetic algorithms) for a more effective
search of the objective space. Additionally, it is clearly shown from the experimental
studies of this chapter that the indoor localization problem is composed of multiple
conflicting objectives. For example, at the client-side fingerprinting approaches, the
more localization data are forwarded from the server to the client, the better the lo-
calization accuracy and the privacy preservation, but more resources consumption is
required by the smartphone device. Therefore, the simultaneous optimization ofmul-
tiple objectives requires a problem formulation in the context of multi-objective op-
timization (MOO) than needs to be tackled using techniques such as multi-objective
evolutionary algorithms.
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Moreover, artificial neural network (ANN) optimization is an emerging field due
to the need of selecting the best values of multiple parameters, often achieved with
a trial and error process. In the literature, many research studies utilize optimization
techniques for optimizing the values of ANN parameters and/or determining the
weights of ANN models. Therefore, a future direction would have been to utilize
evolutionary algorithms for optimizing the ANN parameters and investigate whether
this benefits the objectives of theproposed indoor localization challenge. In particular,
the optimization of the ANN parameters using an EA at the server side may decrease
the number of neurons in the prediction model and therefore decrease the size of data
required to be forwarded to the client side for localizingwithout affecting the accuracy
and the privacy guarantees. This will be, therefore, beneficial for the storage space,
energy consumption and computational power needed by the smartphone device.

Furthermore, a dimensionality reduction step before the ANN model training
phase is effective for removing redundant and irrelevant data. As a future work,
dimensionality reduction techniques can be examined with the proposed indoor lo-
calization approach in order to eliminate the dimensions of the model’s input data,
based on their relevance to the localization process (e.g., eliminate data of non-sensed
Wi-Fi APs). This will result in further reducing the model size and consequently im-
prove smartphone resource preservation.
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Chapter 8
A New Obstacle Avoidance Technique
Based on the Directional Bat Algorithm
for Path Planning and Navigation
of Autonomous Overhead Traveling
Cranes

Asma Chakri, Amar Skendraoui, Rabia Khelif and Haroun Ragueb

1 Introduction

Overhead traveling cranes (OTC) are being used inmany industriesworldwide. These
cranes operate under different conditions and some of these operating conditions can
be dangerous to humans. Though most cranes are operators by human operators,
safety requirements make it necessary to remove human operators completely from
any potential dangerous conditions. Consequently, autonomous overhead traveling
cranes for such operating conditions become a necessity in practice.

The developments of such autonomous cranes have been the subject of several
research studies. Terashima and Suzuki [1] proposed a navigation system and path
planning for an overhead traveling crane, based on a strategy derived from the reso-
lution of the diffusion equation. The latter reflects the diffusion process of chemical
species in a medium, and its basic idea is to assimilate the movement of the crane to
the spread of chemical elements. This method is an off-line method, which requires
some prior knowledge of the OTC working environment. Mandelli and Haider [2]
proposed a methodology to convert old cranes of a cement plant that exists in the
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USA, to fully automated ones. The monitoring of these cranes for a period of six
years shows that the maintenance costs decreased by 30%.

Akamatsu et al. [3] introduced an online path planning method where they used
the potential method based on the resolution of the diffusion equation. In addition,
ultrasonic sensors have been added to detect small changes in the working space,
to update the path planning system. Omar et al. [4] developed an autonomous OTC
system using a fuzzy control system which mimics the thought of an expert crane
operator in setting some of the key control parameters. Wecker et al. [5] developed
an obstacle detection system using three cameras installed at the hook to enable an
OTC to move without collision. Miyoshi et al. [6] presented a path planning method
with consideration of the hook rotation. This technique is very useful when handling
long objects such as pipes, steel profiles, containers and others.

Kaneshige et al. [7] proposed an improvement to the control method presented
in [3] by including a load swinging suppression system to allow the transport of an
open container filledwith liquid. Smoczek et al. [8] developed an obstacle recognition
system using two cameras to create a 3D reconstruction of the environment, and then,
they used the A* search algorithm to bypass obstacles. Yang et al. [9] developed a
vision system for obstacle avoidance using surveillance cameras installed at the
trolley. This system recognizes the hook load and creates or delimits a safety zone.
If, during the movement of the OTC, an object or obstacle enters the safety zone, the
system will send an alarm signal and stops.

Metaheuristic algorithms have been used extensively inmany applications, includ-
ing applications to develop autonomous mobile robots for obstacle avoidance using
genetic algorithm [10], particle swarmoptimization (PSO) [11, 12], bacterialmimetic
algorithm (BMA) [13], andmore recently the invasiveweedoptimization (IWO) [14],
harmony search algorithm (HS) [15] and cuckoo search algorithm (CS) [16]. These
algorithms have been widely used to solve engineering problems. Sivakumar et al.
[17] applied the A* algorithm for the path planning of two mobile cranes working in
cooperation. Ali et al. [18] solved the same problem by using the genetic algorithm.
Wang et al. [19] used the ant colony algorithm (ACA) for planning obstacle avoid-
ance of a mobile crane in a complex environment. Despite the success in robots and
mobile cranes control, the implementation of these algorithms for automating the
OTC remains an unexploited research area.

The bat algorithm is a new bio-inspired metaheuristic algorithm, introduced by
Xin-She Yang in 2010 [20]. Due to its ease implementation and efficiency, this
algorithm had attracted much intention, and it has been used to solve a diverse range
of engineering problems. Despite that, many studies reported that this algorithm
may suffer from the premature convergence problem that can occur under certain
conditions; therefore, several improved variants have been proposed to improve the
exploitation and exploration capability of the algorithm [21–25].

Recently, an improved version of the bat algorithm, called the directional bat
algorithm (dBA), has been introduced by Chakri et al. [26], and since, it has been
used to solve different engineering problems [27–32]. The dBA makes use of the
directional echolocation characteristics used by micro-bats to define and guide the
direction of the next movement. By integrating this feature, the exploration and
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exploitation capabilities of the algorithm have significantly enhanced, and the results
showed that the directional bat algorithm performs better than several bat algorithm
variants such as [21–25] and other state-of-the-art algorithms such as the restart CMA
evolution strategy with the increasing population size (IPOP-CMA-ES) [33] and the
self-adaptive differential evolution (SaDE) [34].

In this chapter, we develop a new methodology for the path planning of
autonomous overhead traveling cranes with automatic obstacle avoidance. A new
online obstacle avoidance mechanism based on the directional bat algorithm is intro-
duced. In the next section, the classical bat algorithm and the directional bat algo-
rithm are described brieflywith the emphasis on the key features in addition to a short
review on recent advance in BA improvement. In Sect. 3, the proposed strategy of the
path planning with obstacle avoidance is presented in detail. In Sect. 4, simulation
results are presented and analyzed. Finally, conclusions are drawn and discussed in
Sect. 5.

2 BA, dBA and Variants

2.1 The Standard Bat Algorithm

The standard bat algorithm was first developed by Xin-She Yang [20] through obser-
vation of micro-bats flying behavior. As the micro-bats are primarily blind, they use
echolocation process to fly through dark, search for preys and navigation in different
environments. To translate this behavior into meaningful mathematical algorithm,
Yang proposed the following idealized rules:

1. All bats use echolocation to sense distance, and the location of a bat xi is encoded
as a solution to an optimization problem under consideration [20].

2. Bats fly randomly with velocity vi at position xi with a varying frequency (from
a minimum f min to a maximum frequency f max) or a varying wavelength λ and
loudness A to search for prey. They can automatically adjust the wavelengths (or
frequencies) of their emitted pulses and the rate of pulse emission r depending
on the proximity of the target [20].

3. Loudness varies from a large positive value A0 to a minimum constant value Amin

[20].

In a d-dimensional space, each bat should have its position and velocity defined
(xi and vi, respectively), and when flying, they are updated as follows [20]:

fi = fmin + (
fmax − fmin

)
rand (1)

vt+1
i = vt

i + (
x∗ − xti

)
fi (2)
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xt+1
i = xti + vt+1

i (3)

with rand ∈ [0,1] is a random vector, and x* is the current global best location among
the bat swarm. In addition to guided navigation defined by Eqs. (1)–(3), each bat is
allowed to have a local detour using the random walk process given by:

xnew = xold + ε < At+1 > (4)

where ε ∈ [−1, 1] is a random number, and < At+1
i > is the average loudness of all

the bats at this time step.
The loudnessAi and the rate of pulses emission ri are updatedduring the navigation

and the hunting process of bats. As they approach their preys, the loudness decreases,
and the pulse rate increases according to the following:

At+1
i = αAt

i , (5)

r t+1
i = r0i

[
1 − exp(−γ t)

]
(6)

where 0 < α < 1 and γ > 0 are constants. As t → ∞, we have At
i→ 0 and rti→ r0i . The

initial loudness A0 can typically be A0 ∈ [1, 2], while the initial emission rate r0 ∈ [0,
1]. The pseudo-code of the standard bat algorithm is presented in Algorithm 1. The
global convergence of the standard BA has been investigated and proved by Chen
et al. [35]. They build a Markovian model of BA, and the analysis showed that the
bat swarm constitutes a finite homogeneous Markov chain that satisfies the criterion
of global convergence.

Algorithm 1. The standard bat algorithm

01. Define the objective function
02. Initialize the bat population Li≤ xi ≤ Ui (i = 1,2,..,n) and vi
03. Define frequencies f min and f max
04. Initialize pulse rates ri and loudness Ai

05. While (t ≤ tmax)
06. Adjust frequency, Eq. (1).
07. Update velocities, Eq. (2).
08. Move the bats using Eq. (3).
09. if (rand > ri)
10. Generate a local solution around the selected best solution, Eq. (4).
11. end if
12. if (rand < Ai & F(xi) < F(x*))
13. Accept the new solutions
14. Reduce Ai, Eq. (5).
15. Increase ri, Eq. (6).
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16. end if
17. Rank the bats and find the current best x*

28. end while
29. Results processing.

2.2 Recent Advance in Improving the Bat Algorithm

To improve exploration and exploitation capabilities of the standard bat algorithm,
and thus its efficiency and reliability, several authors have proposed new improved
variants of BA in the last few years. A survey of the state-of-the-art bat algorithm
variants can be found in [36–39]. Recently, Cai et al. [40] proposed introducing the
triangle-flipping strategy to update the velocity defined byEq. (2). Three kinds of flip-
ping strategy have been investigated, namely directing strategy, random strategy and
hybrid strategy between the two previous ones. The performances of the newbat algo-
rithm with different flipping strategies were verified using the CEC2013 benchmark
functions, and the results showed that the use of the hybrid triangle-flipping strat-
egy has better outcomes. Shan and Cheng [41] proposed to replace Eqs. (1)–(3) that
controls the bat global search by a hybrid strategy using: one, the covariance matrix
adaptive evolution strategy (CMA-ES [42]), two, sinusoidal function for updating
frequency similar to the one used in SinDE [43]. The yielded improved bat algorithm,
shortly called MCMABA, has been tested on several classical benchmark functions
where most of them have xi = 0 as a solution, and however, the examination of the
convergence curves shows that algorithm reaches an acceptable solution with few
iterations even for high-dimensional problem (d = 30 in this case). This happens
when the equation controlling the bat movements has the tendency to converge to xi
= 0 within few iterations [38], in this case, we suspect that this behavior is caused by
Eqs. 13 and 14 in Ref. [41]. The same observation can be applied to the BA variant
proposed by Gan et al. [44] which is based on stochastic inertia weight and iterative
local search (ILSSIWBA). In this case, the iterative locale search, controlled by Eq. 7
in Ref. [44], has the tendency to converge also to xi = 0 in few iterations.

Liu et al. [45] suggested to incorporate three modifications to the main flowchart
of BA in order to improve its performances. The first modification is related to the
first stage of population initialization. The secondmodification concerns the location
updating process, whereas the third modification is about adding external optimiza-
tion using either predatory search [46], or the algorithm proposed by Chen et al.
[47] to improve PSO. The authors examined performances of various combinations
of the three modifications, and they found that the simultaneous use of the three
modifications with predatory search as an external optimization strategy gives the
best results. Lyu et al. [48] developed an improved self-adaptive variant of BA with
step-control and mutation mechanism (SABA). The main idea of SABA consists
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of defining a new self-adaptive flying mechanism and executing mutation operation
in sometimes when local search is not performed. This modification allows better
space exploration due to mutation and enhanced exploitation by step control. Reddy
and Ganguli [49] suggested that in order to improve BA performances, modification
should be carried on the BA structure. They mainly adopted the dBA flowchart [26]
and introduced several modifications inspired by variants of PSO [50, 51] and BA
[52, 53]. The algorithm was tested using several benchmark functions and compared
to the outcomes of different algorithms. The results showed significant enhancement
compared to the classical bat algorithm.

Wang et al. [54] proposed a novel BA with different strategies, exactly eight, that
control the bat movements. In addition to the original BA equations of movements,
Eqs. (1)–(3), one strategy was from an improved BA variant [55], two strategies
were based on Lévy flight mechanism [56, 57], one strategy is the GA two-point
crossover operator, another is based on PSO equations, and lastly, the local search and
the local disturbance strategies. Each of these strategies has a selection probability
that increases as the strategy produces better results during the iteration process.
The proposed algorithm has been tested on CEC2013 benchmark, and the results
were very quite satisfying, and however, after the insertion of so many strategies and
modification, the algorithmbecomes crowdedwith setting parameters that have tuned
carefully. Bekdas et al. [58] incorporated the structure dynamic equations on the BA
framework so that the algorithm carries out an optimal tuning of mass dampers to
improve the seismic safety of structures. The algorithm was tested using a ten-story
civil structure benchmark and compared to the outcomes of different algorithms such
as PSO and HS and others. The comparison showed that the novel proposed BA can
achieve better results.

2.3 The Directional Bat Algorithm

The new directional bat algorithm (dBA) has introduced four major modifications
[26], and one of the main improvements is to introduce the directional echolocation
behavior to the standard bat algorithm, with the aim to enhance its exploitation and
exploration capabilities so as to improve its performance. The dBA uses a similar
pseudo-code as that of the standard bat algorithm, though the new modifications
have been incorporated in the updating equations. In [26], the new directional bat
algorithm was developed by considering the following assumptions:

• Each bat knows the position of the others and can somehow know if the food exists
around each bat or not.

• Each bat emits two pulses into two different directions before choosing in which
direction it will go.

• All the bats emit a pulse in the direction of the best bat (solution) where the food
is considered to exist and the other pulse to the direction of a randomly chosen
bat.
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Fig. 1 Hypothetical schema of the directional echolocation behavior of bats

As shown in Fig. 1, a bat emits two pulses in two different directions, one to the
direction of randomly selected bat, and the other in the direction of the bat with best
position (the best solution). From the echoes (feedback), the bat can know if the food
exists around these two bats or not. Usually, around the bat with the best position the
food exists (because it has the best fitness value), but around the randomly selected
bat, it depends on its objective fitness value. If it has a better fitness value as the
actual bat, then the food is considered to exist; otherwise, there is not a food source
in the neighborhood.

If the food was confirmed to exist around the two bats (case 1), the current bat
moves to a direction at the surrounding neighborhood of the two bats. If not (case 2),
it moves toward the best bat. The mathematical formulas of the bat movements are:

{
Xt+1
i = Xt

i + (X∗ − Xt
i ) f1 + (Xt

k − Xt
i ) f2 (if F(Xt

k) < F(Xt
i ))

Xt+1
i = Xt

i + (X∗ − Xt
i ) f1 Otherwise

(7)

where Xt
k is the location of randomly selected bat (k �= i), and X* is the best solution.

F( ) is the fitness function that is associated with the objective value of the optimiza-
tion problem under consideration. f 1 and f 2 are the frequencies of the two pulses
updated as the following:

{
f1 = fmin + (

fmax − fmin
)
rand1

f2 = fmin + (
fmax − fmin

)
rand2

(8)

where two random vectors rand1 and rand2 are drawn from a uniform distribution
U(0, 1).
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In addition, the bats are allowed to move from their current positions to new
random positions generated by the following equation:

Xt+1
i = Xt

i+ < At > ε wt
i (9)

where <At> is the average loudness of all bats, and ε ∈ [−1, 1] is a random vector.
Here, wi is a parameter applied to reduce the space of the allowed movement, while
the iterative process proceeds. It is updated as follows:

wt
i =

(
wi0 − wi∞
1 − tmax

)
(t − tmax) + wi∞ (10)

Here,wi0 andwi∞ are the initial and final values thatwi can take during iterations.
In general, we can set wi0 and wi∞ as follows:

wi0 = (Ubi − Lbi )/4 (11)

wi∞ = wi0/100 (12)

where t is the current iteration, and tmax is the maximum number of iterations. Ubi
and Lbi are the upper and lower bounds.

The formula proposed by Yang [20] to update the pulse rate and loudness reaches
their final value during the iterative process quickly, thus reducing the possibility of
the auto-switch from the random walk to the local search. Therefore, Chakri et al.
[26] have proposed to use these monotonically increasing pulse rate and decreasing
loudness, respectively:

r t =
(

r0 − r∞
1 − tmax

)
(t − tmax) + r∞ (13)

At =
(
A0 − A∞
1 − tmax

)
(t − tmax) + A∞ (14)

where the index 0 and ∞ stand for the initial and final values, respectively.
The final improvement is to allow the bats to update the pulse rate and loudness and

to accept a new solution if their movement produces a solution better than the old one
instead of the global best solution as it is in the original algorithm. This modification
was also suggested by Hasançebi et al. [52]. The flowchart of the directional bat
algorithm is presented in Fig. 2.
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Fig. 2 Flowchart of the dBA
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3 The Proposed Strategy for OTC Autonomous Path
Planning

In order to investigate the possibility of an automatic OTC system using the dBA
approach, we first assume that the hangar height of the overhead traveling crane is
limited,which can reduce the simulations in 2D.We thus consider only themovement
according to thewidth (trolleymovement) and length (bridgemovement). In addition,
we assume that the control system of the crane has no preliminary knowledge of the
position of the obstacles and the working environment; however, the obstacles detec-
tion is done online via proximity sensors on the limited periphery and can provide
the (x,y) coordinates of the obstacle. We also assume that only the start position and
the target are known. Moreover, for purely numerical reasons and to facilitate sim-
ulations, we assume that the OTC movement is done step by step in the workspace,
and the trajectory is a set consisting of control points {Ps, P1, P2, . . . , Pn, Pt } where
Ps and Pt represent the starting point and the target point, respectively, while the Pi

(i = 1–n) are the positions of the trolley in the 2D space.
Theoretically speaking, the optimumpath and the shortest path between twopoints

is a straight line if there is no obstacle. The truck cranemoves from its current position
to the new position following a straight path. If we fix the origin of the coordinate
system (Oxy) at a corner of the hangar, the path described by the trolley displacement
can be obtained as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pi+1 = Pi + sign(Pt − Pi )

(
sin(α)

cos(α)

)
R

Pt =
(
xt
yt

)
and Pi =

(
xi
yi

)

tg(α) =
(
xa−xi
ya−yi

)
(15)

where R represents the step, and x and y are the trolley coordinates. Pi+1 is the next
position, and Pi is the previous one.

During its movement, the OTC is equipped with an obstacle detection systemwith
a radius (R0), which describes a perimeter called the safety perimeter. In order that
the crane moves without any collision, the step R should be smaller than R0. If an
obstaclePo (xo, yo) is within the safety perimeter, a signal is sent to the control system
for path correction. The path correction mechanism essentially forms a constrained
optimization problem with the objective function being the minimal distance from
the next position Pi+1 to the target, subject to the constraint that keeps a distance
greater than or equal to R0 to the obstacle. Therefore, the optimization problem can
be defined as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Minimize dt =
√

(xt − xi+1)
2 + (yt − yi+1)

2

Subject to

min
(
doj

) = min

(√(
xoj − xi+1

)2 + (
yoj − yi+1

)2
)

≥ R0

xi − R ≤ xi+1 ≤ xi + R
yi − R ≤ yi+1 ≤ yi + R

(16)

The index i represents the current position, while i + 1 represents the next move.
The search space with a solution to such a problem inside the safety perime-

ter called the secure search space, and this secure search space can be explored
effectively by dBA. We opted for a square search space with a length equal to 2R
to simplify the optimization problem and thus reduce the complexity of the search
space (thus reducing the computation time). If we had defined a circular search space
with a radius of R, we would need to add a second constraint which increases the
computation time. Therefore, to enable the crane to move autonomously without
collision with obstacles, we propose this framework illustrated in Fig. 3 to control
the movement of the overhead traveling crane.

To better understand the obstacle avoidance mechanism, Fig. 4 shows a hypothet-
ical schema of the proposed control system in this paper. Initially, the user provides
the starting and target positions. The crane begins to move to the target, following a

Fig. 3 Framework of the
crane’s movement
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Fig. 4 Hypothetical schema of the obstacle avoidance mechanism

straight path. If, during its movement, an obstacle is detected at the edge of the safety
perimeter, the path correction system is activated. In this phase, the path correction
system uses the dBA to find the direction of the next move. This is repeated as it is
needed until the crane going around the obstacle. When the obstacle is out of the
security perimeter, the OTC continues to move toward the target in a straight path.

4 Simulation, Results and Discussions

To test the minimization efficiency of the new directional bat algorithm, a compari-
son with several standard algorithms, namely the standard bat algorithm (BA) [20],
particle swarm optimization (PSO) [51], differential evolution (DE) [59] and genetic
algorithm (GA) [60], on benchmark multimodal functions has been carried out.
The considered benchmark functions are: the spherical function, Rosenbrock’s func-
tion, Rastrigin’s function, Griewank’s function, Ackley’s function, Alpine’s function,
Weierstrass’ function and finally Salomon’s function. The mathematical details of
the previous functions are described in Appendix.
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Since the obstacle avoidance problem is a two-dimensional problem, we consider
the minimization of these functions in a two-dimensional space (D = 2). In addition,
for a fair comparison, the common parameters of the algorithms must be the same,
we set the population size N = 10 and the number of iterations tmax = 20. The
parameter settings of each algorithm are listed in Table 1. Each algorithm was run
100 times, and the mean and the standard deviation of the obtained minimum of
each run are summarized in Table 2. As we can see, dBA obtained the best mean for
every problem compared with the standard algorithms. This is due to the embedded
modifications which had improved both exploration and exploitation capabilities of
the algorithm. In addition, dBA has a better ability to find a feasible solution with a
low number of function evaluations. That means that dBA can be potentially used in
low-specification hardware and can still work efficiently.

Table 1 Algorithms’ parameters setting

Algorithms Settings

dBA r0 = 0.1, r∞ = 0.7, A0 = 0.9, A∞ = 0.6, fmin= 0 an fmax= 2

BA r0 = 0.1, A0 = 0.9, α = γ = 0.9, fmin= 0 and fmax = 2

PSO c1 = 1.5, c2 = 1.2 and w is a monotonically decreasing from 0.9 to 0.4

DE “DE/rand/1/bin” strategy with CR = rand[0.2, 0.9] and F = rand[0.4, 1]

GA Crossover probability = 0.95 and mutation probability = 0.05

Table 2 Comparison between dBA and the standard algorithms on benchmark functions

Function dBA BA PSO DE GA

Spherical Mean 0.181001 446.1696 4.548414 1.511587 69.84505

StD 1.308170 494.3148 14.17570 2.655406 263.1806

Rosenbrock Mean 1.112144 57.17420 3.171311 2.108372 198.2591

StD 1.987260 210.2229 5.178383 2.564265 811.0343

Rastrigin Mean 1.757334 7.796023 3.039737 1.775359 9.197475

StD 1.184982 4.946270 2.612374 1.207610 5.411830

Griewank Mean 0.136200 0.637118 0.186973 0.141056 0.470444

StD 0.080813 0.380729 0.135418 0.080684 0.327793

Ackley Mean 1.432040 12.17725 2.863056 1.951879 5.610177

StD 1.151961 4.694127 2.082912 1.131155 3.336199

Alpine Mean 0.000561 0.028292 0.001443 0.000710 0.014127

StD 0.000407 0.036066 0.002611 0.000423 0.014031

Weierstrass Mean 0.018404 0.134584 0.042181 0.021645 0.147582

StD 0.011680 0.054456 0.035523 0.011339 0.060173

Salomon Mean 0.351917 49.64252 0.973821 0.593340 10.71349

StD 0.279611 46.87526 1.555780 0.932064 37.21352

StD standard deviation
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Table 3 Means and standard deviations of results obtained by different algorithms

dBA BA PSO DE GA

Min 6.435292 6.4353704 6.4363972 6.4353745 6.4391189

Mean 6.437134 6.4457429 6.4427854 6.4389122 6.4757661

Max 6.440841 6.4641947 6.4582331 6.4801772 6.5500459

StD 0.001259 0.0059314 0.0040632 0.0047332 0.0239345

StD Standard deviation

In the second test, we use some other effective algorithms such as the standard bat
algorithm (BA), particle swarm optimization (PSO), differential evolution (DE) and
genetic algorithm (GA) to solve the problem described in Eq. (16) with xi = (5.4 m,
14.5 m)T, xo = (6.75 m, 15 m)T, xt = (9 m, 20 m)T, R0 = 1.5 m and R = 0.1 m.
In this problem, we assume that the crane is in the position xi near the obstacle xo,
and we want to find the next position xi+1, with the minimum distance to xt , while
avoiding collision with any obstacle in the neighborhood. With the same parameter
configuration as the previous test, the results are presented in Table 3. Each algorithm
was run 100 times, and the best, the mean, worst and the standard deviation (StD) are
presented. As we can see, dBA achieves better results compared to other algorithms.
The differences between dBA and the others algorithms are around 1 and 2 cm,
which cannot be considered as negligible because these differences can accumulate
with the increase in the number of navigation points that have to be generated by
the algorithm to avoid obstacles and the number of obstacles. As a result, the paths
generated by dBA have the lowest distance between the starting point and the target
point.

Consider now an overhead traveling crane with a width (x) of 22.5 m and length
(y) 50 m. To simulate the movements of the OTC, we assume that we want to move
an object from its current position Ps (xs = 1 m, ys = 2 m) to the other corner at Pt

(xt = 20 m, yt = 45 m). The distance between the two points is 47.01 m. Here, we
will consider three tests with different complexities. In the first phase, we will put
an obstacle Po1 in the straight path between Pt and Ps, to examine the behavior of
the proposed algorithm. After that, we add a second obstacle Po2 in the path of the
trolley according to the new corrected trajectory. In the third phase, and to increase
the complexity of the environment, we add five more obstacles deliberately put in
the path of the crane. The coordinates of each obstacle are shown in Table 4.

We assume that the diameter of the object that we want to move is 1 m; therefore,
to allow to the OTC to move without collision, we set R0 = 1.5 m and R= 0.1 m. The
same parameter settings of dBA used in the previous experiment for benchmarking

Table 4 Obstacles’ coordinates

Po1 Po2 Po3 Po4 Po5 Po6 Po7

xoj (m) 6.75 8 7 10 13 15 18

yoj (m) 15 20 20 22 25 35 40
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is used here, in addition to N = 10 and tmax= 20. In the first test, one obstacle
has been deliberately put on the straight path between the starting point and the
target. The path generated by the OTC movement is illustrated in Fig. 5. As it can
be seen, in the first place, the crane moves toward the target in straight path. When
it reaches a certain distance to the obstacle (1.5 m), the crane detects the existence
of the obstacle and engages the auto-correction of the path with dBA. As a result,
it bypasses successfully the obstacle and continues its movement toward the target
in a straight line. In the second test, another obstacle has been put on the trajectory
after correction. Figure 6 shows that the proposed method enables the OTC to avoid
the second obstacle.

Fig. 5 OTC’s path with one
obstacle
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Fig. 6 OTC’s path with two
obstacles
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In the third test, seven obstacles have been imposed on the path of the OTC. As it
is shown in Fig. 7, the OTC finds its way easily and avoids all the obstacles smoothly.
We also observe that the proposedmethod can handle any new obstacle and can avoid
any closely placed obstacles, as like what happens near the obstacles (e.g., obstacles
2 and 3 in Fig. 7).

Figure 8 represents the presumed trajectory if there were no obstacles or after
bypass an obstacle. It is clear that when the crane bypasses an obstacle, it moves
in a straight line toward the target. Figure 9 shows the way back path in the same
environment. As we can see, it is different from the other path to go. This is due to
the fact that the obstacles were intentionally placed in the path of the OTC whenever

Fig. 7 OTC’s path with
seven obstacles
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Fig. 8 Assumed path
without correction
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Fig. 9 Way back path with
the same obstacles
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it bypasses an obstacle for switch-on the obstacle avoidance mechanism. It is worth
pointing that it is impossible that the two paths be the same because the proposed
algorithm does not take into consideration the complete topology of the environment
and only proximity sensors are used to detect obstacles during the movement of the
overhead traveling crane.

In the last test, we have assumed the existence of a large obstacle in the way of the
OTC. The obstacle is detected by sensors and considered as a set of multiple obstacle
points. This set of points is then fed to the algorithm for path planning. The generated
path is presented in Fig. 10. As we can see, the proposed method can bypass large
objects without colliding.

Fig. 10 Actual path taken
by the crane to avoid large
obstacles or barriers
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5 Conclusions

In this paper, a new path planning method for autonomous OTC with obstacles
avoidance has been developed, based on the directional bat algorithm. This new
method can enable the crane to be autonomous and can reduce the operating costs
with improved work efficiency. The results show that this technique allows the OTC
to bypass obstacles easily. In addition, from the application viewpoint, this technique
is less expensive than others that exist in the literature because it does not require
prior knowledge of the working environment (a prior knowledge of environment
requires general mapping of all workplace and updates every time there is change,
subsequently sophisticated equipment must be installed). In our proposed method,
proximity sensors (e.g., ultrasonic, lasers or cameras) can be installed within the
allowed budget. In addition, due to the low number of iterations and the smaller
bat population, this method can be implemented on low-end, low-priced hardware
(processor and memory).

For further works, it will be very interesting to extend this method to 3D path
planning with obstacle avoidance for high OTC systems, such as tower cranes and
the gantry cranes used in harbor and ports. Another interesting field is to validate
and analyze the proposed method in a dynamic environment with moving obstacles.
In addition, the application of the proposed method to other navigation problems to
avoid obstacles can be also very fruitful.

Appendix

(1) Spherical function:

F1 =
d∑

i=1

x2i (17)

where −100 < xi < 100, f min = 0 and xopt = [0, 0].
(2) Rosenbrock’s function:

F2 =
d−1∑

i=1

[
100

(
xi+1 − x2i

)2 + (xi − 1)2
]

(18)

where −10 < xi < 00, f min = 0 and xopt = [1].
(3) Rastrigin’s function:

F3 = 10d +
d∑

i=1

[
x2i − 10 cos(2πxi )

]
(19)
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where −5.12 < xi < 5.12, f min = 0 and xopt = [0, 0].
(4) Griewank’s function:

F4 =
d∑

i=1

x2i
4000

−
d∏

i=1

cos

(
xi√
i

)
+ 1 (20)

where −100 < xi < 100, f min = 0 and xopt = [0, 0].
(5) Ackley’s function:

F5 = −20 exp

⎛

⎝−0.2

√√√√ 1

d

d∑

i=1

x2i

⎞

⎠ − exp

(
1

d

d∑

i=1

cos(2πxi )

)

+ 20 + exp(1)

(21)

where −32 < xi < 32, f min = 0 and xopt = [0, 0].
(6) Alpine’s function:

F6 =
d∑

i=1

|xi sin(xi ) + 0.1xi | (22)

where −10 < xi < 10, f min = 0 and xopt = [0, 0].
(7) Weierstrass’ function:

F7 =
d∑

i=1

(
20∑

k=0

[
0.5k cos

(
2π · 3k(xi + 0.5)

)]
)

− d
20∑

k=0

[
0.5k cos

(
2π · 3k · 0.5)]

(23)

where −0.9 < xi < 0.9, f min = 0 and xopt = [0, 0].
(8) Salomon’s function:

F8 = 1 − cos

(

2π
d∑

i=1

xi

)

+ 0.1
d∑

i=1

x2i (24)

where −100 < xi < 100, f min = 0 and xopt = [0, 0].
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Chapter 9
Natural Heuristic Methods
for Underwater Vehicle Path Planning

Yu-Xin Zhao and De-Quan Yang

1 Path Planning of Underwater Vehicle

1.1 Path Planning

The path planning of vehicles is a significant problem in the field of navigation
research; the objective is to navigate the vehicle to the target point without encoun-
tering any obstacles. According to the degree of mastering environmental informa-
tion, the problems can be divided into two types: the first one is global planning
with known environmental information, and the other one is local planning with
unknown environmental information [1]. The global planning method plans a path
for the vehicle according to the acquired environmental information; the accuracy
of this path planning depends on that of the obtained environmental information.
The global method could usually find the optimal solution, but the exact information
of the environment should be provided in advance and also the computational cost
is high. The local planning method focuses on the local environmental information
of current aircraft so that the aircraft have good collision avoidance capabilities.
The navigation method used for underwater vehicles is usually the local planning
method because its information acquisition only depends on the sensor systemwhere
this changes in real time with environment [2]. Compared with the global planning
method, the local planning method is real time and more practical; however, local
planning only depends on local information and occasionally produces local poles.
Thus, the smooth arrival of the vehicle at the destination could not be guaranteed [3].

From the perspective of the representation dimension of environmental space,
there are two types of vehicle path planning: one is path planning in three-dimensional
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space environments and the other one is path planning in two-dimensional space envi-
ronments. Any object moves in the three-dimensional space environment; but when
the solutions of the problems allow, for more simple calculations, the problems in
the three-dimensional space environment can be reasonably abstracted into the two-
dimensional space environment. However, in some cases, themovement of the object
cannot be reasonably abstracted into two-dimensional space environments, such as
the movement of underwater vehicles, because the movement process involves the
navigation height, not only the simple change of longitude and latitude. In this case,
the path planning in the three-dimensional space environments is required. The path
planning in three-dimensional space environments has more abundant data storage,
longer calculation time, and higher calculation complexity, resulting in that path
planning in three-dimensional space environments is a challenging problem in the
field of path planning [4].

The complexity of the environment and the diversity of requirements faced by
vehicle path planning induce the following characteristics:

1. Complexity: In complex environments, especially in dynamic time-varying envi-
ronments, the problems of vehicle path planning are very complex and the
calculations cost is high.

2. Randomness: There are many random and uncertain factors in the changes
of complex environments. The appearance of dynamic obstacles in unknown
environments is often uncertain and is not exactly predictable in advance.

3. Multiple constraints: There are geometric and physical constraints on the motion
of the vehicle. Geometric constraints refer to the shape constraints of the vehicle,
while physical constraints refer to the velocity and acceleration constraints of the
vehicle.

4. Multi-objective: There are many objectives for evaluating the performance of the
path in the process of navigation, such as the shortest path, the best time and the
least energy consumption; but there are often conflicts between them.

1.2 Objective Optimization

Path planning is an important branch of navigation research. The optimal path plan-
ning problem is to find an optimal path that can avoid obstacles from the starting
position to the target position in its working space according to the optimization cri-
teria (such as minimumwork cost, shortest walking path, and shortest walking time).
The optimization objectives for underwater vehicle path planning generally include
path length, energy consumption, navigation time, path smoothness, and path safety
[5].

The shortest path length is one of the main goals of path. The path length can
reflect path planning’s effect. In single-objective path planning, it is often taken as
the optimization goal. Energy consumption is particularly vital in underwater vehicle
path planning; especially, when the underwater vehicle is sailing in a large range
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marine environment, the problem of energy consumption becomes very prominent.
It is necessary to consider its own energy during the mission and the actual energy
consumption when the vehicle tracks the path. Sailing time is related to the length
of the path. When the vehicle is required to reach the destination in the shortest
time, the sailing time should be taken as the optimization target. The planning results
aiming at the path length are often a series of non-smooth broken lines. In order
to improve the navigation stability of underwater vehicles and reduce unnecessary
energy consumption during turning corners, path smoothness is also set as one of the
optimization objectives. Generally, the number of inflection points or the included
angle of inflection points is taken as the evaluation criteria. In order to ensure the
safe operation of underwater vehicles, path safety is set as one of the optimization
objectives. Generally, the shortest distance from the path to the obstacle is also taken
as the evaluation criteria.

The path planning problem of underwater vehicles includes both single-objective
optimization problems and multi-objective optimization problems. Note that there
are internal relations among the optimization objectives. For example, both path
length and path smoothness impact the energy consumption and navigation time.
Ensuring the safety of the planned path is the premise of the planning task [6].

1.3 Main Processes

The main processes of path planning include environmental data obtaining, environ-
mental modeling, path searching, path optimization, and smoothing.

1.3.1 Environmental Data Obtaining

For the problem of path planning of aircraft, three-dimensional space environment
data generally include ocean current and wave information, temperature and salin-
ity information, and three-dimensional seabed terrain information. According to the
environment data information, the path planning area can be divided into three cate-
gories. The first category is the safety area which the aircraft desire to enter, such as
seabed sound track. If the aircraft enter this safety area, navigation safety could be
achieved. The second category is the potentially dangerous areas that we do not want
the aircraft to enter but are not forcibly forbidden to enter, such as areas with the large
difference in seawater salinity. If the aircraft enter this area, it will not cause direct
damage; but the difference in seawater salinity can cause great changes in seawater
buoyancy and thus result in that the aircraft suddenly sink or float. If the aircraft sink
to an area where an obstacle is located, there will be a risk of collision, whereas if
the aircraft float to the detectable area, it will be exposed. The third category is the
dangerous areas that are forbidden to enter, such as the areas where obstacles are
located. If the aircraft enter this area, there could be a risk of collision between the
aircraft and the obstacle. Therefore, the aim of aircraft path planning is to navigate
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aircraft to enter the safety area, avoid entering the potentially dangerous area, and
prohibit entering the dangerous area.

1.3.2 Environmental Modeling

Reasonable environmental modeling can better carry out path planning. The cor-
responding process requires the known seabed environmental information data as
inputs. The collected real three-dimensional seabed terrain elevation data is often
the scattered data that are randomly distributed; so, these scattered data are usually
rasterized to obtain evenly distributed data on grid points. However, even the evenly
distributed grid data fail to meet the requirements of the path planning algorithm. So,
it is usually necessary to perform interpolation operations on the evenly distributed
grid data to obtain grid data with higher density. The ultimate goal of environmental
modeling is to establish an appropriate mathematical model to represent the stud-
ied environmental objects. By doing so, the actual physical environment (feasible
areas and obstacles) can be simulated by the recognizable and expressible numerical
environment, so that the path planning process can be carried out through computer
simulation.

1.3.3 Path Searching

The path search algorithm of the vehicle is the focus and main difficulty of the whole
vehicle path planning. An appropriate algorithm can quickly and accurately plan a
reasonable path, thus saving time and fuel and ensuring the safety of navigation. In
order to ensure the feasibility and optimality of the path, the searched path needs to be
evaluated and the objective function should be designed. Several factors, such as the
path smoothness and path length, are involved. Different weights need to be given
to different objective functions. After the algorithm completes the path planning,
the target function is used to evaluate the searched path. If the searched path fails
to meet the evaluation criteria, the path planning algorithm should be adjusted and
searched again. If the path meets the evaluation criteria, the path planning algorithm
is terminated.

1.3.4 Path Optimization

Path optimization is the smooth optimization of the path at the inflection point, in
order to make the path more conducive to the execution algorithm of the vehicle.
Path optimization considers the dynamic characteristics of the intelligent vehicle
itself, so that the navigation along the planned trajectory can be realized in practical
application. After the path optimization process is completed, an effective path must
be output in the path planning area for the navigation of the vehicle.
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1.4 The Key to the Problems

Themain challenge of vehicle path planning is path planningunder three-dimensional
seabed environments. The key issues involved mainly include two aspects: one is the
three-dimensional seabed environment modeling, and the other is the path planning
method. The main aspect of environmental modeling is to reasonably model the
path planning environment. This process uses the known three-dimensional seabed
environment information,which is a prerequisite for path planning. Through environ-
mental modeling, the actual physical environment can be simulated as a recognizable
and expressible computer environment; that is, it can be understood as a data struc-
ture, which can describe the physical environment. In fact, environmental modeling
establishes a mapping between the computer environment and the actual physical
environment. With this mapping, the path planning can be carried out by a computer.
The real seabed environment is complex and varied, and the geographical elements
are also varied. However, when we establish the virtual seabed environment model,
the seabed’s environmental elements can be selectively extracted according to the
requirements.

The definition of vehicle path planning is to give a description of the vehicle
and environment. After the modeling of the vehicle’s navigation environment is
completed, the task of path planning is to search for an optimal path (or suboptimal
path) from the starting point to the target point within the path planning area; during
this process, a certain optimization algorithm is applied to ensure safe navigation.
The path planning method is responsible for searching the feasible space of the path
and finding the optimal path in this space; this is the most important and complicated
part in the whole path planning process. To ensure the completion of the navigation
task, the path of the vehicle and the process of path planning should be optimized to
find the global optimal path in the shortest possible time. Consequently, the vehicle
path planning can generate a feasible path with both a high performance and a high
quality.

2 Characteristics of Underwater Path Planning

In the marine environment, the complex movement of seawater could include cur-
rents, waves, tides, internal waves, storm surges, laminar flow, and turbulent flow of
seawater. Subjected to their interference, the vehicle could deviate from the origi-
nal path and may collide with obstacles [7]. Therefore, the interference of marine
environmental factors must be taken into account in the path planning of the vehicle.
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2.1 Safe Navigation Factors

Safety is the most basic issue to be considered in the path planning of underwater
vehicles. For global path planning problems, safety refers to that planned routes
enable the vehicle to avoid known obstacles when obstacles refer to seabed topo-
graphical environments; for local path planning problems, safety refers to how to
adjust the global planning route locally and avoid effectively sudden static state and
dynamic obstacles [8]. The information of sudden static and dynamic obstacles can
generally be detected by sensors such as sonar.

2.2 Hidden Navigation Factors

Hidden navigation is an important factor that needs to be considered in the route plan-
ning of underwater vehicles. The concealed navigation of underwater vehicles can be
realized by improving the concealability of the underwater vehicle and using exter-
nal environmental information. The external environmental information has certain
significances for the path planning of underwater vehicles, mainly including trans-
parency information, seabed terrain information, and marine environmental infor-
mation. Transparency refers to the visibility of seawater in different regions, which
varies with different regions and seasons. Currently, there are transparency data of
different sea areas and seasons from satellite remote sensing. Submarine topography
can be used to achieve concealed navigation; this chapter will not discuss how to use
submarine topography to avoid sonar detection.

2.3 Marine Environmental Factors

The navigation time of the underwater vehicle from the starting point to the target
point is mainly determined by the length of the navigation path, the tortuosity of
the navigation path, and the current conditions of the navigation area. Underwater
vehicles usually work in complex and variable marine environments, where there
are eddy currents that could be manifested by a wide range of seawater flowing
continuously in time and space. Ocean current, as an energy flow, has a great impact
on the operation of the vehicle. Especially, when the vehicle encounters a strong
sea current field in the underwater environment, ocean current even jeopardizes the
vehicle’s smooth execution. The navigation of the vehiclemust consider the influence
of the current; so judging and predicting the current is the basic requirement for
finding the optimal path in the path planning of the vehicle. When the vehicle is
sailing in a wide range of marine environments, it is necessary to consider the energy
consumption in the mission. We can try to make the vehicle flow along the current
and use the energy of the current field to reduce the energy consumption of the
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countercurrent navigation. Therefore, it is necessary to plan a path with as little
energy consumption as possible and a shortest sailing distance [9].

3 Intelligent Path Planning Algorithm

Due to the complexity, randomness,multi-constraint,multi-objective, and other char-
acteristics of the vehicle path planning problem, the traditional vehicle path planning
method often fails to showa good optimization effect. In recent years, with the contin-
uous development of natural heuristic intelligent methods such as neural networks
and genetic algorithms, many researchers have used intelligent methods to solve
the problem of vehicle path planning and have achieved good results [10]. Among
them, the common intelligent path planning methods are as follows: artificial neu-
ral network methods, fuzzy logic methods, genetic algorithms, and the ant colony
algorithm.

3.1 Neural Network Method

Artificial neural networks are a new interdisciplinary subject inspired by biology and
have gradually become an important component of artificial intelligence. Artificial
neural networks have good adaptive, self-organizing, and self-learning capabilities;
these capabilities enable it to solve the problem of vehicle path planning. The neural
network method uses a parallel connection network structure to plan a series of path
points, so that the length of the whole path is as short as possible and at the same time
it is as far away from obstacles as possible. Collision-free paths are represented by a
series of intermediate points and adjacent points are connected by line segments. The
collision penalty function is used to quantify the collision property between the path
and the obstacle, which is defined as the sum of the collision penalty functions of
each path point; the collision penalty function of one point is represented by its neural
network for each obstacle. When the artificial neural network is used to solve the
problem of vehicle path planning, the capability to avoid obstacles and path planning
capability of the vehicle enhances. Currently, the three-layer perceptron model and
BP neural network algorithm are widely used.

When using the artificial neural network method for path planning, it has some
advantages: the principle of this method is relatively simple, the calculation ratio is
relatively small, and the convergence is relatively fast. However, there are still some
shortcomings: the neural network needs to adjust network weights according to the
feedback information; and the neural network has not been trained at the initial stage
of the algorithm, which makes the optimization effect not ideal at the initial stage of
the algorithm; and it needs to run for a certain period of time until the system reaches
stability before a better optimization effect can be obtained.
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3.2 Fuzzy Logic Method

Fuzzy logic was developed from the concept of a fuzzy set proposed by American
mathematician Zadeh [11]. According to the fuzzy environment information and the
query information table, specific information is obtained, and then the task of path
planning can be completed. In the process of vehicle path planning, the description
of the environment is often impacted by uncertain factors, which cannot be defined
as certain environmental features. Fuzzy logic is not sensitive to the uncertainty of
the environment around the vehicle because it requires less precision of the sensor
information, thus making the behavior of the vehicle show good consistency, sta-
bility, and continuity. The fuzzy logic method is a frequently used method in local
path planning technology and it has good applicability for exploring path planning
problems without knowing all the environmental information.

The advantage of the robot path planning method based on fuzzy logic is that it
can plan a suitable path relatively quickly and accurately in the environment where
the robot has partial information or in the dynamic environment. It is also a rela-
tively good method for robots with relatively high navigation speed requirements
and relatively strong adaptability to the environment. However, there are also some
disadvantages of this method: when the environmental information is complex, i.e.,
in an environment with many obstacles, the amount of calculations using this method
would be relatively large.

3.3 Genetic Algorithm

The genetic algorithm (GA) is a simulated evolutionary optimization algorithm pro-
posed by Prof. John Holland of the University of Michigan in 1975 [12]. With
the continuous development of the algorithm, many researchers have successfully
applied it to solve the path planning problem [13]. The global path planning method
of the vehicle based on the genetic algorithm firstly discretizes the working space of
the vehicle with grids. Secondly, it uses a series of orderly arrangement of grid serial
numbers to represent the motion path (i.e., an individual) of a vehicle. It uses a group
composed of multiple motion paths as the basis for the optimal search. Finally, it
uses the genetic operator to carry out the genetic operation on the group to obtain the
optimal motion path of the vehicle under the evaluation criterion of “shortest path
length.”

When the genetic algorithm is used to solve the problem of vehicle path plan-
ning, it has the advantages of strong global searching ability and good robustness.
However, there are also some disadvantages: when the length of the code needed
for optimization is relatively longer, the computation is relatively larger, the running
speed is relatively slower, the real-time performance is lacking, and the phenomenon
of “premature” convergence is easy to occur, that is, the optimized path is not the
global optimal path, but a suboptimal path.
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3.4 Ant Colony Algorithm

In 1992, Marco Dorigo proposed a simulated evolutionary algorithm—ant colony
algorithm in his Ph.D. thesis [14]. The algorithm originated from research on the
foraging behavior of ants. Researchers found that ants in nature have obvious self-
organization and self-adaptive behavior in the process of searching for food. The
positive feedback and coordination of the ant colony algorithm make it applicable to
distributed systems, and the implicit parallelism makes it have strong development
potential. It has good adaptability in solving the problem of optimal combination.
Therefore, it is applied to the global path planning of vehicles to explore a new path
optimization algorithm.

The ant colony algorithm has good effects on small-scale optimization problems;
but for complex optimization problems, its optimization performance drops sharply.
The main reason for this problem is that at the initial stage of ant colony algorithm
optimization, the pheromone level on each path is basically the same, and the ant
search shows great blindness. Only after a relatively long time, the pheromone level
on each path may show a big difference; the difference in pheromone level could
play a guiding role in the selection of ant paths. In addition, because the ant colony
algorithm is a positive feedback algorithm, it is also easy to fall into local optimal
solutions.

4 Firefly Algorithm

4.1 Bionics Principle

There are many kinds of fireflies in nature, and different kinds of fireflies have
different purposes of lighting. Some fireflies attract the opposite sex to mate and
reproduce new life; some fireflies attract prey; and some fireflies may play a warning
role to tell foreign enemies that they are inviolable. All kinds of uses are to be further
explored by scientists.

Fireflies in nature mainly rely on their own light to transmit information or attract
food with their companions, but the light will be absorbed in the process of trans-
mission. Therefore, the further the fireflies fly, the worse the accuracy of information
transmission is. Based on this information, British scholar yang Xin-she proposed
a new natural heuristic intelligent optimization method—firefly algorithm (FA),
which is a random optimization algorithm similar to the particle swarm optimization
algorithm, while this algorithm awaits more development [15–18].

The firefly algorithm simulates the solution in the solution space as individual
fireflies, and each individual firefly contains its own fluorescein value and perception
radius. The fluorescein value is used tomeasure the position of the individual, i.e., the
solution. The perceived radius is used to determine the search range of the individual.
The individual can only find excellent individuals within a certain search range and
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move toward them. When a firefly finds an individual with a large fluorescein value,
within its own search range, it moves toward the individual. The firefly algorithm
can exchange information between individual fireflies by comparing the fluorescein
value of each firefly, thus achieving optimization in the solution space.

The firefly algorithm is inspired by the luminous intensity of fireflies. The fluo-
rescence they emit is mainly used to attract the opposite sex. In order to make the
algorithm simpler, more effective and more accurate, we remove some unimportant
factors and assume that all fireflies with weak luminous intensity move to fireflies
with strong luminous intensity in a certain search area, realizing the iteration of the
optimal position. In order to construct the firefly algorithm, the following idealization
criteria are used to idealize some characteristics of firefly luminescence:

1. Fireflies are genderless, that is, each fireflywill attract all other fireflies regardless
of gender.

2. The attraction is proportional to their brightness. For twofireflies, the dimmerfire-
flies will be attracted by the brighter fireflies andmove toward them continuously,
while the brighter fireflies will move randomly. This attraction is proportional to
brightness, and the attraction gradually decreases as the distance between fireflies
increases.

3. The brightness of fireflies is determined by the optimizing objective function
value.

Due to the increase of distance and the absorption of light by air, the brightness
of a firefly i will gradually decrease when the distance r increases. In order to show
the variation of this brightness with distance, the definitions of absolute brightness
and relative brightness of fireflies are given.

Absolute brightness: For a firefly i, the initial light intensity (light intensity at r = 0)
is the absolute brightness of firefly i, denoted by I i.
Relative brightness: The light intensity of firefly i at the position where firefly j is
located in the relative brightness of firefly i to firefly j, denoted by I ij.

Assume that the solution space of the objective function to be optimized is
d-dimensional. In this solution space, the firefly algorithm randomly initializes
a group of fireflies x1, x2, . . . , xι, . . . , xn , n is the number of fireflies, and xι =
(xi1, xi2, . . . , xid) is a d-dimensional vector, which indicates the position of firefly i
in the solution space and can represent a possible solution of the problem. Defining
the absolute brightness of fireflies is directly determined by the objective function,
then the magnitude of the absolute brightness directly indicates the advantages and
disadvantages of the possible solution represented by fireflies; that is, the possible
solution, which represented by fireflies with higher absolute brightness, is better.

All fireflies follow the following attraction rules: fireflieswith low absolute bright-
ness are attracted by those with high absolute brightness and they (with low absolute
brightness) move toward them (with high absolute brightness) continuously. Based
on this rule, each firefly would move to the firefly with higher absolute brightness
in the solution space, thus updating its position and obtaining a new solution. The
firefly with the highest absolute brightness in the whole solution space cannot be
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attracted by any firefly and it moves randomly. Through this attraction mechanism
based on (absolute) brightness, the entire population can continuously explore in the
solution space and all fireflies move to a better solution area.

After all the fireflies move to the new position, the absolute brightness of the fire-
flies is updated. Note the fireflies are attracted by the fireflies with the higher absolute
brightness than them. After a period of iteration, fireflies would gather around the
fireflieswith higher brightness to obtain the optimal solution of the objective function.
This interaction between fireflies is almost independent, so that the solution space
can be searched efficiently, and the local optimal solution and the global optimal
solution can be obtained at the same time.

4.2 Algorithm Description

The firefly algorithm first randomly distributes N firefly individuals in the problem-
solving space (each individual firefly represents a solution in the solution space of
the problem); each individual firefly carries a quantitative fluorescein value li(i = 1,
2, …, N), where the individual’s fluorescein value is associated with the individual’s
location, that is, the fluorescein value is associated with the solution function value
J(xi). At the same time, each individual firefly has its own perception range, the
size of which is determined by the perception radius rdi. Firefly i searches for all
individuals with larger fluorescein values to form a neighborhood set Ni(t) within
its perception range (0 < rdi < rs, where rs is the maximum perception radius of
the individual), then selects an individual lj with larger fluorescein value from the
neighborhood setNi(t) according to a probability function; and firefly imoves toward
the individual j, and finally updates the perception radius rdi. This process is repeated
until a certain number of iterations are reached. When all firefly individuals gather at
a certain position in the problem-solving space, that is, the optimal solution position
of the problem, the problem is solved.

The firefly algorithm can be divided into fluorescein value updating stage, search-
ing for the brightest individual stage, the firefly position updating stage, and the
neighborhood radius updating stage.

4.2.1 Update Fluorescein Value

As the fluorescein value of the fireflies is constantly updated, the fluorescein value
simulates the fitness of a solution in the solution space. The higher the fluorescein
value is, the stronger the attraction of the individual and the greater the probability of
other individuals moving toward it are. The fluorescein value is related to the value
of the solution function. In the formula, li (t + 1) represents the fluorescein value of
individual i in the t + 1 iteration; li (t) represents the fluorescein value of individual
i in the t iteration; J(xi (t + 1)) represents the fitness function value of individual i in
the t + 1 iteration; ρ represents the volatilization coefficient of the fluorescein value;
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and γ represents the enhancement coefficient of the fluorescein value.

li (t + 1) = (1 − ρ) ∗ li (t) + γ ∗ J (xi (t + 1)) (1)

1. Find the brightest individual

Each individual firefly can be attracted by the individual with high fluorescein value.
However, the attraction action is affected by the perception range and the individual
can only find and move to the individual with high fluorescein value within its
perception range.

The size of the perception range is determined by the perception radius rdi. When
the distance between individual i and individual j, ||xj − xi|| is smaller than the radius
rdi, individual j is considered to be within the perception range of individual i. If the
fluorescence brightness of individual j simultaneously satisfies that lj is larger than
the fluorescence brightness li of the individual i, a better individual j is considered
to be found within the perception range of individual i.

There may be many individuals whose fluorescein values are greater than their
own in the perception range of individual i, so the firefly algorithm establishes a
neighborhood set for each individual Ni(t) = {j:dij(t) < rdj(t);li(t) < lj(t)}; and the
set stores all individuals whose fluorescein values are greater than their own in
the neighborhood set, where dij represents the distance between individual i and
individual j.

After the neighborhood setNi(t) is established, the probability that all individuals
j(j ε (Ni(t))) in the neighborhood set of individuals are selected as target individuals is
calculated according to the Formula (2); and then, the better individuals are selected
as targets to move to according to the calculated probability.

pi j = l j (t) − li (t)
∑

k∈Ni (t)
lk(t) − li (t)

(2)

2. Update firefly location

After calculating the probability distribution of the neighborhood set for individual i,
individual ifinds the individual jwhosefluorescein value is higher than that of himself
in the perception range according to the probability distribution and then moves
position according to the formula to approach individual j. i denotes an individual
whose position is to be moved; j denotes an individual with a high fluorescein value
selected according to the probability distribution, i.e., a target individual to which
individual i is gradually approaching in this iteration; s denotes a moving step length;
xi(t) denotes a position before the individual imoves; and xi(t + 1) denotes a position
after the individual moves.

xi (t + 1) = xi (t) + s ∗
(

x j (t) − xi (t)∥
∥x j (t) − xi (t)

∥
∥

)

(3)
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3. Update neighborhood radius

After the position of individual i changes, its perception radius needs to be updated,
i.e., the perception range of individual i needs to be enlarged or reduced in order to
find more local optimal solutions and thus find global optimal solutions.

The update procedure of the perception radius of individual i is related to the
neighborhood set Ni(t). If there are more individuals with high fluorescein value and
|Ni(t)| is larger in the perception range of individual i, then the perception radius
should be appropriately reduced so that more local optimal solutions can be found.
If there are only a few individuals with high fluorescein value and |Ni(t)| is small,
within the perception range of individual i, then the perception radius should be
appropriately enlarged to facilitate individual i to havemore choices andmove toward
a better position.

The neighborhood radius of individual i is updated according to the according
to Formula (4), where rs represents the maximum perception radius of all individ-
uals; and β represents the change coefficient of perception radius. nt represents the
number of excellent individuals defined in the perceived range, when the number
of better individuals in the perception range is greater than nt , the neighborhood
radius of individuals decreases, otherwise it increases. |Ni(t)| represents the number
of better individuals found within the individual perception range, i.e., the size of
neighborhood set.

r j
d (t + 1) = min

{
rs,max

{
0, r j

d (t) + β ∗ (nt − |Ni (t)|)
}}

(4)

4.3 Algorithm Flow

The firefly algorithm needs to perform three stages: algorithm initialization, firefly
location update, and firefly brightness update. The basic flow of firefly algorithm is
shown in Fig. 1.

In the algorithm initialization stage, the algorithm parameters are set and the
location of the firefly is initialized; and the position vector of the firefly is brought
into the target function to initialize the brightness of the firefly. In the firefly location
updating stage, all firefly positions are updated according to the brightness of the
firefly and the attraction rules between the fireflies. In the firefly brightness updating
stage, the new position vector of the firefly is brought into the target function to
complete the brightness updating of all the fireflies. The commonly used termination
conditions of the algorithm are: the algorithm reaches a certain number of iterations
and the algorithm obtains an optimized target value that meets the requirements [19].

Combined with the above description of firefly algorithm and when we take the
termination condition of the algorithm as “reaching a specific iteration number” as
an example, the pseudocode of firefly algorithm can be summarized as follows:
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Fig. 1 Firefly algorithm
flow chart

Define objective function f (x̄), x̄ = (x1, x2, · · · , xd)
τ

Set Max Generation as the number of algorithm iterations
Set algorithm parameters α, β0, γ

Initialize n fireflies xι = (i = 1, 2, . . . , n)

The absolute brightness of each firefly f (xι) is determined by the objective
function value I (xι)

While (t < Max Generation)

for i = 1: n All n fireflies
for j = 1: n All n fireflies
if (I (xι) > I

(
xj

)

Calculate the distance between firefly i and firefly j, rij
Calculate the distance between firefly i and firefly j, β ij(rij)
Move firefly j to firefly i.

end if
Evaluate the new solution and update the brightness of fireflies.
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end for j
end for i

end while
Arrange all fireflies to find the current optimal solution

Analyze the results

4.4 Performance Analysis

In the field of intelligent optimization, the genetic algorithm and particle swarm
optimization (PSO) algorithm are the twomost influential algorithms in this field, and
their research is relatively mature [20]. As a novel intelligent optimization algorithm,
the firefly algorithm and the two algorithms mentioned above have many similar
characteristics [21]. In order to better understand firefly algorithm, and to clarify its
connection and difference with genetic algorithm and particle swarm optimization
algorithm, the firefly algorithm is compared with these two algorithms.

In order to compare the optimization performance of these three algorithms, this
section uses four test functions to compare the firefly algorithm, particle swarm
optimization algorithm, and genetic algorithm. These test functions are widely used
in the research of evolutionary algorithms. The purpose of the experiment is to
find the global minimum of four test functions. The mathematical expression and
optimization search range of the test function are shown in Table 1, and their global
minimum values are all 0. Among them, the sphere function and the Rosenbrock
function are single-mode functions, while the Rastrigin function and the Griewank
function are multi-mode functions with multiple local optimal values. The three-
dimensional diagrams of the four test functions are shown in Figs. 2, 3, 4, and 5,
respectively.

In order to fairly compare the optimization performance of the algorithms, the
population size of the three algorithms is set to N = 40, and the dimension of
each test function is set to 30 dimensions. The firefly algorithm, genetic algorithm,
and particle swarm optimization algorithm are used to optimize the above four test

Table 1 Test functions

Function name Mathematical expression Search scope

Sphere f1(�x) = ∑n
i=1 x

2
i [−100, 100]n

Rosenbrock f2(�x) = ∑n−1
i=1

[
100

(
x2i − xi+1

)2 + (xi − 1)2
]

[−100, 100]n

Rastrigin f3(�x) = ∑n
i=1

[
x2i − 10 cos(2πxi ) + 10

]
[−100, 100]n

Griewank f4(�x) = ∑n−1
i=1

[
100

(
x2i − xi+1

)2 + (xi − 1)2
]

[−600, 600]n
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Fig. 2 Three-dimensional diagram of the sphere function
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Fig. 3 Three-dimensional diagram of the Rosenbrock function
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Fig. 4 Three-dimensional diagram of the Rastregin function
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Fig. 5 Three-dimensional diagram of the Griewank function

functions. In order to observe the iterative process of the algorithm, the optimization
iterative curves of the three algorithms for the 30-dimensional test function are shown
in Fig. 6, in which the abscissa is the iteration number of the algorithm, and the
ordinate is the average optimal value obtained by running the algorithm 30 times.

As can be seen from Fig. 6, compared with the genetic algorithm and particle
swarm optimization algorithm, the firefly algorithm has a slower convergence speed
and usually requires more iterations to find a better optimal value. Especially, for
the Griewank function, after 20,000 iterations the optimal value found by firefly
algorithm has not been significantly improved. The above experimental results show
that the convergence speed of the firefly algorithm is too slow to effectively meet the
needs of the problem.

In firefly algorithm, optimization is realized by the interaction between fireflies.
The firefly j with lower brightness is attracted by firefly i with higher brightness and
move position as follows:

�x j (t + 1) = �x j (t) + β i j (ri j )
(�xi (t) − �x j (t)

) + α(rand − 1/2) (5)

βi j (ri j ) = β0e
−γ r2i j (6)

ri j = ∥
∥�xi − �x j

∥
∥ =

√
√
√
√

d∑

k=1

(xi,k − x j,k)2 (7)

Because the firefly populations are randomly and evenly distributed in the whole
search space when the algorithm is initialized, the cartesian distance rij between
fireflies is large, and β ij (rij) is small and the second term of the position update
formula βi j

(
ri j

)(�xi (t) − �x j (t)
)
is very small; that is, attraction has rather little effect

on fireflymovement. In addition, the third term of the location update formula a(rand
−1/2) ε a× [−1/2,1/2], when a= 1, a(rand−1/2) ε [−1/2,1/2], this random step size
is also relatively small; that is, fireflies have limited free exploration area. Therefore,
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(1) Sphere function optimization iteration curves

(2) Rosenbrock function optimization iteration curves

(3) Rastrigin function optimization iteration curves

Fig. 6 Optimization iteration curves of FA, GA, and PSO for the four test functions
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(4) Griewank function optimization iteration curves

Fig. 6 (continued)

at the beginning of the algorithm, the firefly algorithm has insufficient exploration
ability and fails to find the region where the optimal value is located quickly in the
whole search space, resulting in a slow convergence speed.

4.5 Algorithm Improvement

When the distance between fireflies is large, the attraction has little effect on the
position update of the fireflies, which is consistent with the basic idea of the algo-
rithm. At this time, if fireflies themselves can independently explore a reasonable
range, the exploration ability of the algorithm can be enhanced, thus accelerating
the convergence speed of the algorithm. It should be noted that when the distance
between fireflies is small, the ability of fireflies to explore independently should be
limited so that attraction plays a dominant role in the update process of the fireflies’
positions. Therefore, we use the new firefly location update formula:

�x j (t + 1) = �x j (t) + β i j (ri j )
(�xi (t) − �x j (t)

) + 2ri j (rand − 1/2) (8)

Apparently, 2rij(rand −1/2) ε [−rij, rij] is the random step size of fireflies which
varies with rij. After the above position updating formula is adopted, when the dis-
tance between fireflies is large and the attraction has a little guiding effect on the
position updating of fireflies, the fireflies can move autonomously within the range
[−rij, rij], which is convenient for the algorithm to explore a larger search space.
When the distance between fireflies is small, the range in which the fireflies canmove
autonomously decreases with decrease in distance, and the influence of attraction on
the position update greatly increases, thus guiding the fireflies to move to the fireflies
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with higher brightness. The algorithm for updating the location of fireflies is called
the modified firefly algorithm (MFA).

Through simulation experiments, the performance of the MFA is tested and com-
pared with the optimization results of the basic firefly algorithm, genetic algorithm,
and particle swarm optimization algorithm. In order to compare the accuracy of the
optimal value obtained by the algorithm, a specific number of iterations are taken
as the termination condition of the algorithm and a specific number of iterations are
checked. When the algorithm reaches a certain number of iterations, the algorithm
terminates.We run the experiment 30 times, compare the statistical values (including
the optimal value, pessimistic value, average value, and standard deviation) of the
optimization results of the algorithm, and draw the optimization iteration curve of
the algorithm.

The statistical values of the optimization results of the algorithm are shown in
Table 2. The bold typeface is used to identify the optimal values of each row of data.
The optimization iteration curve of the algorithm is shown in Fig. 7.

For the sphere function, PSO has the highest optimization accuracy and the lowest
standard deviation of the optimization results, while MFA has higher optimization
accuracy than FA and GA. For the Rosenbrock function, Rastrigin function and

Table 2 Algorithm optimization results

Function and its
search range

Statistical value MFA FA GA PSO

Sphere [−100,
100]30

Optimal value 1.94E−12 5.93E+01 4.26E−04 3.79E−46

Pessimistic value 5.42E−06 4.62E+04 1.33E−02 1.34E−37

Average 6.22E−07 2.22E+04 2.30E−03 6.11E−39

Standard
deviation

1.35E−06 1.30E+04 2.90E−03 2.54E−38

Rosenbrock
[−100, 100]30

Optimal value 4.84E−08 5.16E+04 1.16E+00 5.82E−04

Pessimistic value 3.30E−03 7.75E+09 1.75E+02 6.77E+01

Average 2.78E−04 2.61E+09 7.31E+01 5.18E+00

Standard
deviation

6.53E−04 2.18E+09 5.01E+01 1.24E+01

Rastrigin [−100,
100]30

Optimal value 3.49E−11 6.08E+03 1.90E+01 9.95E−01

Pessimistic value 2.50E−03 3.94E+04 1.41E+02 1.59E+01

Average 2.83E−04 2.54E+04 6.06E + 01 7.96E+00

Standard
deviation

5.86E−04 9.22E+03 1.41E+02 3.68E+00

Griewank
[−600, 600]30

Optimal value 9.35E−13 4.26E+02 5.41E−04 0.00E+00

Pessimistic value 1.99E−06 6.72E + 02 3.42E−01 9.36E−02

Average 2.21E−07 5.81E+02 9.23E−02 2.39E−02

Standard
deviation

3.91E−07 6.60E+01 7.39E−02 2.59E−02
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(1) Sphere function optimization iteration curves

(2) Rosenbrock function optimization iteration curves

(3) Rastrigin function optimization iteration curves

Fig. 7 Optimization iteration curve of algorithm under a large search range
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(4) Griewank function optimization iteration curves

Fig. 7 (continued)

Griewank function, the MFA is apparently superior to another three algorithms in
terms of precision and standard deviation of the optimization results. The MFA can
get a better optimal value at the beginning of the iterations. After 2000 iterations,
the accuracy of the obtained optimal value is higher than that of other three algo-
rithms. For the sphere function, although the MFA fails to perform as well as PSO
in optimization accuracy, it also obtains a satisfied optimal value. It can be seen that
the MFA performs well after a certain number of iterations and can obtain better
optimization results than the FA.

5 Route Planning Based on Firefly Algorithm

5.1 Environmental Modeling

Environmental modeling is an important part and also the basic link of vehicle path
planning. The essence of environmental modeling is based on known environmental
information. By extracting and analyzing relevant environmental features, we can
then transform this environmental feature into a feature space that the vehicle can
recognize and understand. When we combine the specific path planning algorithm to
select the appropriate environment modeling method, a reasonable modeling method
can reduce the search volume and reduce the complexity of time-space in the path
planning process. In path planning technology, grid method modeling has always
been favored by scholars and most of them are used in vehicle path planning. Three-
dimensional space path planning also uses the grid method. The main idea is to first
divide the solid into a plane and then into a plane grid.
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The working environment of the vehicle is defined in the three-dimensional rect-
angular coordinate systemO-XYZ, with the origin pointO as the starting point of the
vehicle, the point S as the end point, andOS is on the Y-axis. In the coordinate system
O-XYZ, the cubic ABCD–EFGH is made, in which the ABCD plane is a square plane
on the XOZ plane; AB is parallel to the X-axis; BC is parallel to the Z-axis; the origin
O is the midpoint of the square plane ABCD, and AE = h. Firstly, the planning space
ABCD–EFGH is divided into n + 1 equal parts along OS and the parallel plane to
the ABCD plane is made through each bisection point, so that we can obtain n planes
Π j(j = 0, 1, 2,…, n). Then, the arbitrary planeΠ j is divided into m equal parts along
the edge A′B′, and m equal parts along the edge A′D′; so we divide the plane Π j into
m × m grids, and the planning space ABCD–EFGH is discretized into some points,
and we call the set of points S*.

Let the coordinate of the sequence number of any discrete point in the planning
space be P(i, j, k), where i = {0, 1, 2, …, m}, j = {0, 1, 2, …, m}, k = {0, 1, 2,
…, m}, the point P(x, y, z) corresponding to the O-XYZ coordinate system can be
obtained by the following formula:

x = −l + 2l × i

m
(9)

y = j × h

n
(10)

z = −l + 2l × k

m
(11)

5.2 Route Expression

Any route is connected by a series of waypoints. When we assume that n waypoints
(excluding start and end points) form a route, the route can be expressed as P =
(O, p1, p2, …, pn, S), where (p1, p2, …, pn) is the sequence of waypoints; the goal
of route planning is to determine these n waypoints. In order to determine these
waypoints and reduce the number of calculations needed, three-dimensional route
planning based on the firefly algorithm generally adopts the following design ideas:
determine the planning space according to the navigation tasks, and set the route
planning process as the process of finding waypoints in each plane equally divided
along a certain coordinate axis direction, and then connect all waypoints into lines
in sequence.

Let the coordinates of the starting point and the target point of the navigation task
bePo(xo, yo, zo) andPs(xs, ys, zs), respectively. If |xo − xs|≥ |yo − ys|, then the latitude
direction is selected as the main direction of the route search, and the waypoints are
dispersed in the equal latitude planes divided along the OX direction; otherwise,
the longitude direction is selected as the main direction of the route search and the
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Fig. 8 Schematic diagram of three-dimensional route expression

waypoints are scattered in equal longitude planes divided along OY direction. When
the latitude direction is used as the main direction of the route search, the number
of route points to be searched is n, and thing similar here would be better the route
start point Po and end point Ps are located, and we record them as Ω0 and Ωn+1,
respectively. Then, the planning space between Ω0 and Ωn+1 is equally divided into
n + 1 segments along the OX direction to obtain n planes parallel to Ω0 and Ωn+1,
which are denoted as Ω i, i = {1, 2, …, n}. When we use the firefly algorithm for
route planning, first, find the first waypoint P1 of the target route on the first plane
Ω1, and then find the second waypoint P2 of the target route on the second plane Ω2

by P1 and so on to find the rest of the waypoints. The starting point Ps, the respective
waypoints, and the ending point Po are sequentially connected to form a target route
(Fig. 8).

5.3 Evaluation Function

The length of the route is one of the most commonly used route evaluation indicators.
A route with n route points consists of n − 1 route segments. The length of the route
is the sum of the lengths of each route segment. The formula for calculating the route
length is as follows:

⎧
⎨

⎩

E = LSP1 +
n−1∑

i=1
�L1 + LPnO

�Li =
√

(xi − xi−1)
2 + (yi − yi−1)

2 + (zi − zi−1)
2

(12)

where (xi, yi, zi) is the coordinate of the ithwaypoint, (xi−1, yi−1, zi−1) is the coordinate
of the i− 1thwaypoint, 1≤ i<n;LSP1 is the distance between the starting point and the
first waypoint; �Li, the distance between the ith waypoint and the i + 1th waypoint;
LPnO is the distance between the last waypoint and the target point.
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5.4 Process Design

Step 1 Determine the starting point and target point of the route according to the
task information, then determine the navigation area and finally rasterize the
navigation environment to construct the planning space.

Step 2 Set the firefly population parameters and initialize the firefly population in
the planning space.

First, set the firefly population parameters, including the population size
M, the random coefficient starting value αb, the random coefficient ending
valueαe, themaximum attractive force β0, the absorption coefficient starting
value γ b, the absorption coefficient ending value γ e, the dimension n, and
the maximum iteration number of times N.

The initialization method of firefly population is as follows: the main
direction of the route planning is determined according to the positional
relationship between the starting point and the target point; then, the planning
space is divided along the direction to obtain n planes. The initialization is
to find a waypoint on each plane. The motion state of the vehicle includes
four states: straight, floating, diving, and steering. Considering the vehicle’s
own performance and maneuver constraints, floating and diving must meet
certain angle constraints and the steering must meet the minimum turning
radius constraint. These constraints are reflected in the route planning to limit
the selection of waypoints to a certain range. According to the maximum
floating and dive angles, the range of motion of the aircraft in the vertical
direction can be determined. According to the minimum turning radius, the
range of motion of the horizontal steering of the vehicle can be determined.
Let the range of the upper and lower movement of the vehicle be HScale and
the range of left and right movements be YScale, then the actual selection
range of the waypoints in each plane is a rectangular area with side lengths
of 2HScale and 2YScale. A waypoint is randomly selected as the first waypoint
within the selection range of the first waypoint; then, the second waypoint
is determined using the above method according to the position of the point.
All waypoints are found by analogy, thus the initialization of a firefly is
completed. Other fireflies are initialized in the same way.

Step 3 Use the improved firefly algorithm to search for the optimal route and obtain
the optimal route.

Calculate the brightness value of each firefly according to the evalua-
tion function, and then sort the whole firefly population according to the
brightness values of the firefly population; calculate the brightness variance
of the firefly population, and calculate the absorption coefficient and ran-
dom coefficient of the firefly algorithm according to the brightness variance;
then update the position of each firefly according to the position movement
formula. In the location update process, the actual selection range of the
waypoints also needs to be considered . When the firefly’s node position
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Table 3 Firefly population parameters

Race
size

Ethnic
dimension

Maximum
gravity β0

Absorption
coefficient
starting
value γ b

Absorption
coefficient
termination
value γ e

Random
coefficient
starting
value αb

Random
coefficient
termination
value αe

10 30 1 1.0 0.8 0.1 1.0

Fig. 9 Planning space

exceeds the set range, the position update is re-executed until a node that
satisfies the condition is found. Repeat the above operation until the end
condition is met.

5.5 Simulation

The effectiveness and correctness of the route planning based on the improved firefly
algorithm are verified by simulation experiments. The firefly population parameter
settings are as follows (Table 3). In the simulation test, route planning is carried out in
the sea areawith a rangeof 3°×3° (Fig. 9). In order to facilitate the obstacle avoidance
ability of the observation algorithm and highlight the obstacle characteristics of the
planning space, the actual length of the abscissa and ordinate is reduced to (1852 ×
60)/1000 in the following test.

5.5.1 Algorithm Validity

In order to verify the effectiveness of the firefly route planning algorithm, experiments
were carried out for different current conditions with the starting point and the target
point at the same depth and also at different depths.
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Experiment 1: When the current is small, the depth of the starting point and the
target point are both 50 m. The latitude and longitude of the starting point are (122.5°
E, 21.17° N), and the latitude and longitude of the target point are (123.63° E, 22.37°
N). The three-dimensional and top-view images of the planning results are shown in
Figs. 10 and 11, respectively.

Experiment 2:When the current is small, the depth of the starting point is different
from the depth of the target point. The latitude and longitude of the starting point
are (122.5° E, 21.17° N), the depth is 100 m, the latitude and longitude of the target
point are (123.63° E, 22.37° N), and the depth is 150 m. The three-dimensional and
top views of the planning results are shown in Figs. 12 and 13, respectively.

Experiment 3: When the current is large, the depth of the starting point and the
target point are both 100 m. The latitude and longitude of the starting point are
(122.5° E, 21.17° N), and the latitude and longitude of the target point are (123.63°

Fig. 10 Three-dimensional
map of route planning results

Fig. 11 Top view of route
planning results
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Fig. 12 Three-dimensional
map of route planning results

Fig. 13 Top view of route
planning results

E, 22.37° N). The three-dimensional and top views of the planning results are shown
in Figs. 14 and 15, respectively.

Experiment 4:When the current is large, the depth of the starting point is different
from the depth of the target point. The latitude and longitude of the starting point
are (122.5° E, 21.17° N), the depth is 100 m, the latitude and longitude of the target
point are (123.63° E, 22.37° N), and the depth is 150 m. The three-dimensional and
top views of the planning results are shown in Figs. 16 and 17, respectively.

It can be seen from the results of the above experiments that the route planning
method based on the firefly algorithm can successfully search for the route from the
start point to the end point in various situations. The route is smooth, and obstacles
can be successfully avoided, demonstrating the effectiveness of the algorithm.
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Fig. 14 Three-dimensional
map of route planning results

Fig. 15 Top view of route
planning results

Fig. 16 Three-dimensional
map of route planning results
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Fig. 17 Top view of route
planning results

5.5.2 Algorithm Performance

The feasibility of the firefly algorithm for three-dimensional route planning is ver-
ified by the above experiments. The performance of the algorithm is tested below
by comparison experiments with particle swarm optimization algorithm. The exper-
iment uses particle swarm optimization algorithm as the comparison algorithm to
compare and analyze the route planning results of the two algorithms. The selection
of the simulation environment is consistent with the above. The starting point of the
route is (122.5° E, 21.17° N); the depth is 100 m; the latitude and longitude of the
target point are (123.63° E, 22.37° N); and the depth is 150 m.

The two algorithm populations are set to 10, and the dimensions are taken as 5, 10,
20, 30, 40, and 50, respectively, for the route planning test. If the algorithm can find
the route to avoid obstacles, the search is considered successful. For each case, the
stopping condition of the firefly algorithm and particle swarm optimization algorithm
is 400 consecutive iterations. The algorithm runs independently 50 times, and the
success rate of each algorithm, the route length, and the average time consumption
under the optimal conditions are counted (Table 4).

It can be seen from the performance test result and simulation diagram that the
success rate of route planning using the firefly algorithm is higher and the route
length is shorter, which indicates that the algorithmhas better performance. However,
when the dimension is small, the success rate of the two algorithms is low. This is
because the dimension of the algorithm corresponds to the number of waypoints
in the planned route. The smaller dimensions would cause the algorithm to lose its
obstacle avoidance ability in the area without route points, resulting in the planned
route crossing obstacles. It can be seen from the average time consumption that the
firefly algorithm takes longer than the particle swarm optimization, which is mainly
because each firefly has to adjust its position according to the brighter firefly in the
process of execution. With the increase in the dimension, the planning speed of the
two algorithms is decreasing, and the time taken for the algorithm to finish increases.
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Table 4 Statistics on the impact of algorithm dimensions on planning results

Dimension Algorithm Number of
successes

Success rate
(%)

Optimal route
length (m)

Average time
consuming
(s)

5 Particle
swarm
optimization
algorithm

14 28 1688.87 50.32

Firefly
algorithm

2 4 1688.87 57.17

10 Particle
swarm
optimization
algorithm

14 28 1688.87 56.70

Firefly
algorithm

24 48 1688.87 70.69

20 Particle
swarm
optimization
algorithm

30 60 1688.87 75.54

Firefly
algorithm

46 92 1688.87 101.85

30 Particle
swarm
optimization
algorithm

50 100 1688.87 90.06

Firefly
algorithm

50 100 1688.87 134.34

40 Particle
swarm
optimization
algorithm

50 100 1688.96 107.54

Firefly
algorithm

50 100 1688.87 163.28

50 Particle
swarm
optimization
algorithm

50 100 1689.0 121.98

Firefly
algorithm

50 100 1688.87 196.49

Therefore, in the actual route planning, the dimension of the firefly needs to meet
the actual application requirements. The experimental results show that the firefly
algorithm can achieve a success rate of 100%when the dimension is 30, and the time
taken for the algorithm to finish is the least.
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